Subjectively interesting alternative clusterings

被引:0
|
作者
Kleanthis-Nikolaos Kontonasios
Tijl De Bie
机构
[1] University of Bristol,Intelligent Systems Laboratory
来源
Machine Learning | 2015年 / 98卷
关键词
Subjective interestingness; Maximum entropy modelling; Alternative clustering;
D O I
暂无
中图分类号
学科分类号
摘要
We deploy a recently proposed framework for mining subjectively interesting patterns from data to the problem of alternative clustering, where patterns are sets of clusters (clusterings) in the data. This framework outlines how subjective interestingness of patterns (here, clusterings) can be quantified using sound information theoretic concepts. We demonstrate how it motivates a new objective function quantifying the interestingness of a clustering, automatically accounting for a user’s prior beliefs and for redundancies between the discovered patterns.
引用
收藏
页码:31 / 56
页数:25
相关论文
共 50 条
  • [1] Subjectively interesting alternative clusterings
    Kontonasios, Kleanthis-Nikolaos
    De Bie, Tijl
    MACHINE LEARNING, 2015, 98 (1-2) : 31 - 56
  • [2] Subjectively Interesting Connecting Trees
    Adriaens, Florian
    Lijffijt, Jefrey
    De Bie, Tijl
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2017, PT II, 2017, 10535 : 53 - 69
  • [3] Subjectively interesting connecting trees and forests
    Florian Adriaens
    Jefrey Lijffijt
    Tijl De Bie
    Data Mining and Knowledge Discovery, 2019, 33 : 1088 - 1124
  • [4] SICA: subjectively interesting component analysis
    Bo Kang
    Jefrey Lijffijt
    Raúl Santos-Rodríguez
    Tijl De Bie
    Data Mining and Knowledge Discovery, 2018, 32 : 949 - 987
  • [5] SICA: subjectively interesting component analysis
    Kang, Bo
    Lijffijt, Jefrey
    Santos-Rodriguez, Raul
    De Bie, Tijl
    DATA MINING AND KNOWLEDGE DISCOVERY, 2018, 32 (04) : 949 - 987
  • [6] Discovering subjectively interesting multigraph patterns
    Kapoor, Sarang
    Saxena, Dhish Kumar
    van Leeuwen, Matthijs
    MACHINE LEARNING, 2020, 109 (08) : 1669 - 1696
  • [7] Discovering subjectively interesting multigraph patterns
    Sarang Kapoor
    Dhish Kumar Saxena
    Matthijs van Leeuwen
    Machine Learning, 2020, 109 : 1669 - 1696
  • [8] Subjectively interesting connecting trees and forests
    Adriaens, Florian
    Lijffijt, Jefrey
    De Bie, Tijl
    DATA MINING AND KNOWLEDGE DISCOVERY, 2019, 33 (04) : 1088 - 1124
  • [9] Gibbs Sampling Subjectively Interesting Tiles
    Bendimerad, Anes
    Lijffijt, Jefrey
    Plantevit, Marc
    Robardet, Celine
    De Bie, Tijl
    ADVANCES IN INTELLIGENT DATA ANALYSIS XVIII, IDA 2020, 2020, 12080 : 80 - 92
  • [10] SIMIT: Subjectively Interesting Motifs in Time Series
    Deng, Junning
    Lijffijt, Jefrey
    Kang, Bo
    De Bie, Tijl
    ENTROPY, 2019, 21 (06)