Multi-Task Decomposition Architecture based Deep Reinforcement Learning for Obstacle Avoidance

被引:1
|
作者
Zhang, Wengang [1 ]
He, Cong [1 ]
Wang, Teng [1 ]
机构
[1] Southeast Univ, Dept Automat, Nanjing, Peoples R China
关键词
Multi-task Decomposition Architecture; D3QN; Obstacle Avoidance; Speed Control; Orientation Control; OPTICAL-FLOW; NAVIGATION;
D O I
10.1109/CAC51589.2020.9327414
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Obstacle avoidance is a basic skill of mobile robots. Currently, various Deep Reinforcement Learning (DRL) based approaches have been proposed to enable the robot to navigate in complex environments. However, these existing approaches merely employ collision-related reward to guide the learning of deep models, and thus fail to capture good domain knowledge for obstacle avoidance policy. Actually, practical applications also have strict requirements on speed and energy consumption, except for safety. In addition, the learning efficiency of the above DRL-based approaches is low or even unstable. To handle the above challenges, in this paper, we propose a Multi-task Decomposition Architecture (MDA) based Deep Reinforcement Learning for robot moving policy. This method decomposes robot motion control into two related sub-tasks, including speed control as well as orientation control, with obstacle avoidance inserted into each sub-task. Each sub-task is associated with one single reward and is solved using Dueling Double Q-learning (D3QN) algorithm. Q-values from two different sub-tasks are fused through aggregator to derive final Q-values which are used for selecting actions. Experiments indicate this low dimensional representation makes learning more effective, including better security and control over speed and direction. Moreover, robots can be widely used in new environments, even dynamic ones.
引用
收藏
页码:2735 / 2740
页数:6
相关论文
共 50 条
  • [41] A reinforcement learning based neural network architecture for obstacle avoidance in multi-fingered grasp synthesis
    Rezzoug, Nasser
    Gorce, Philippe
    NEUROCOMPUTING, 2009, 72 (4-6) : 1229 - 1241
  • [42] Study on deep reinforcement learning for multi-task scheduling in cloud manufacturing
    Xiao, Jiuhong
    Cai, Yishuai
    Chen, Yong
    INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING, 2025,
  • [43] Knowledge Transfer in Multi-Task Deep Reinforcement Learning for Continuous Control
    Xu, Zhiyuan
    Wu, Kun
    Che, Zhengping
    Tang, Jian
    Ye, Jieping
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [44] Decision making on robot with multi-task using deep reinforcement learning for each task
    Shimoguchi, Yuya
    Kurashige, Kentarou
    2019 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC), 2019, : 3460 - 3465
  • [45] Obstacle avoidance of multi mobile robots based on hierarchical reinforcement learning
    Zu, Li-Nan
    Tian, Yan-Tao
    Mei, Hao
    Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 2006, 36 (SUPPL. 2): : 108 - 112
  • [46] Unsupervised Task Clustering for Multi-task Reinforcement Learning
    Ackermann, Johannes
    Richter, Oliver
    Wattenhofer, Roger
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, 2021, 12975 : 222 - 237
  • [47] Latent Multi-Task Architecture Learning
    Ruder, Sebastian
    Bingel, Joachim
    Augenstein, Isabelle
    Sogaard, Anders
    THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 4822 - 4829
  • [48] Curriculum-Based Asymmetric Multi-Task Reinforcement Learning
    Huang, Hanchi
    Ye, Deheng
    Shen, Li
    Liu, Wei
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (06) : 7258 - 7269
  • [49] Multi-Task Reinforcement Learning with Context-based Representations
    Sodhani, Shagun
    Zhang, Amy
    Pineau, Joelle
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [50] Congestion Control in SDN-Based Networks via Multi-Task Deep Reinforcement Learning
    Lei, Kai
    Liang, Yuzhi
    Li, Wei
    IEEE NETWORK, 2020, 34 (04): : 28 - 34