Multi-Task Decomposition Architecture based Deep Reinforcement Learning for Obstacle Avoidance

被引:1
|
作者
Zhang, Wengang [1 ]
He, Cong [1 ]
Wang, Teng [1 ]
机构
[1] Southeast Univ, Dept Automat, Nanjing, Peoples R China
关键词
Multi-task Decomposition Architecture; D3QN; Obstacle Avoidance; Speed Control; Orientation Control; OPTICAL-FLOW; NAVIGATION;
D O I
10.1109/CAC51589.2020.9327414
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Obstacle avoidance is a basic skill of mobile robots. Currently, various Deep Reinforcement Learning (DRL) based approaches have been proposed to enable the robot to navigate in complex environments. However, these existing approaches merely employ collision-related reward to guide the learning of deep models, and thus fail to capture good domain knowledge for obstacle avoidance policy. Actually, practical applications also have strict requirements on speed and energy consumption, except for safety. In addition, the learning efficiency of the above DRL-based approaches is low or even unstable. To handle the above challenges, in this paper, we propose a Multi-task Decomposition Architecture (MDA) based Deep Reinforcement Learning for robot moving policy. This method decomposes robot motion control into two related sub-tasks, including speed control as well as orientation control, with obstacle avoidance inserted into each sub-task. Each sub-task is associated with one single reward and is solved using Dueling Double Q-learning (D3QN) algorithm. Q-values from two different sub-tasks are fused through aggregator to derive final Q-values which are used for selecting actions. Experiments indicate this low dimensional representation makes learning more effective, including better security and control over speed and direction. Moreover, robots can be widely used in new environments, even dynamic ones.
引用
收藏
页码:2735 / 2740
页数:6
相关论文
共 50 条
  • [31] Sparse Multi-Task Reinforcement Learning
    Calandriello, Daniele
    Lazaric, Alessandro
    Restelli, Marcello
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 27 (NIPS 2014), 2014, 27
  • [32] Sparse multi-task reinforcement learning
    Calandriello, Daniele
    Lazaric, Alessandro
    Restelli, Marcello
    INTELLIGENZA ARTIFICIALE, 2015, 9 (01) : 5 - 20
  • [33] Multi-task Learning with Modular Reinforcement Learning
    Xue, Jianyong
    Alexandre, Frederic
    FROM ANIMALS TO ANIMATS 16, 2022, 13499 : 127 - 138
  • [34] Joint bidding and pricing for electricity retailers based on multi-task deep reinforcement learning
    Xu, Hongsheng
    Wu, Qiuwei
    Wen, Jinyu
    Yang, Zhihong
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2022, 138
  • [35] A Hybrid Multi-Task Learning Approach for Optimizing Deep Reinforcement Learning Agents
    Varghese, Nelson Vithayathil
    Mahmoud, Qusay H.
    IEEE ACCESS, 2021, 9 : 44681 - 44703
  • [36] Design of Multimodal Obstacle Avoidance Algorithm Based on Deep Reinforcement Learning
    Zhu, Wenming
    Gao, Xuan
    Wu, Haibin
    Chen, Jiawei
    Zhou, Xuehua
    Zhou, Zhiguo
    ELECTRONICS, 2025, 14 (01):
  • [37] A UAV Indoor Obstacle Avoidance System Based on Deep Reinforcement Learning
    Lo, Chun-Huang
    Lee, Chung-Nan
    2023 ASIA PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE, APSIPA ASC, 2023, : 2137 - 2143
  • [38] Depth-based Obstacle Avoidance through Deep Reinforcement Learning
    Wu, Keyu
    Esfahani, Mahdi Abolfazli
    Yuan, Shenghai
    Wang, Han
    PROCEEDINGS OF 2019 5TH INTERNATIONAL CONFERENCE ON MECHATRONICS AND ROBOTICS ENGINEERING (ICMRE 2019), 2019, : 102 - 106
  • [39] Obstacle Avoidance Based on Deep Reinforcement Learning and Artificial Potential Field
    Han, Haoran
    Xi, Zhilong
    Cheng, Jian
    Lv, Maolong
    2023 9TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND ROBOTICS, ICCAR, 2023, : 215 - 220
  • [40] Multi-Agent Deep Reinforcement Learning Based Incentive Mechanism for Multi-Task Federated Edge Learning
    Zhao, Nan
    Pei, Yiyang
    Liang, Ying-Chang
    Niyato, Dusit
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2023, 72 (10) : 13530 - 13535