Extended Newton-type method for nonlinear functions with values in a cone

被引:1
|
作者
Silva, G. N. [1 ]
Santos, P. S. M. [2 ]
Souza, S. S. [2 ]
机构
[1] Univ Fed Oeste Bahia, Ctr Ciencias Exatas & Tecnol, BR-47808021 Barreiras, BA, Brazil
[2] Univ Fed Piaui, Dept Matemat, Parnaiba, PI, Brazil
来源
COMPUTATIONAL & APPLIED MATHEMATICS | 2018年 / 37卷 / 04期
关键词
Newton-like method; Inclusion problem; Banach space; Convex process; CONVEX-COMPOSITE OPTIMIZATION; SOLVING GENERALIZED EQUATIONS; MAJORANT CONDITION; CONVERGENCE ANALYSIS; INCLUSION PROBLEMS; OUTER INVERSES; BANACH-SPACES; ERROR-BOUNDS; KANTOROVICHS; INEQUALITIES;
D O I
10.1007/s40314-018-0617-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the problem of finding solutions of nonlinear inclusion problems in Banach space. Using convex optimization techniques introduced by Robinson (Numer Math 19:341-347, 1972), a convergence theorem for Kantorovich-like methods is given, which improves the results of Yamamoto (Jpn J Appl Math 3(2):295-313, 1986; Numer Math 51(5):545-557, 1987) and Robinson (Numer Math 19:341-347, 1972). The result is compared with previously known results. Numerical examples further justify the theoretical results.
引用
收藏
页码:5082 / 5097
页数:16
相关论文
共 50 条
  • [1] Extended Newton-type method for nonlinear functions with values in a cone
    G. N. Silva
    P. S. M. Santos
    S. S. Souza
    Computational and Applied Mathematics, 2018, 37 : 5082 - 5097
  • [2] Extended Semismooth Newton Method for Functions with Values in a Cone
    Séverine Bernard
    Catherine Cabuzel
    Silvère Paul Nuiro
    Alain Pietrus
    Acta Applicandae Mathematicae, 2018, 155 : 85 - 98
  • [3] Extended Semismooth Newton Method for Functions with Values in a Cone
    Bernard, Severine
    Cabuzel, Catherine
    Nuiro, Silvere Paul
    Pietrus, Alain
    ACTA APPLICANDAE MATHEMATICAE, 2018, 155 (01) : 85 - 98
  • [4] On Fractional Newton-Type Method for Nonlinear Problems
    Bayrak, Mine Aylin
    Demir, Ali
    Ozbilge, Ebru
    JOURNAL OF MATHEMATICS, 2022, 2022
  • [5] Extended Newton-type method for inverse singular value problems with multiple and/or zero singular values
    Wang, Jinhua
    Li, Chong
    Shen, Weiping
    INVERSE PROBLEMS, 2020, 36 (09)
  • [6] Introduction to a Newton-type method for solving nonlinear equations
    Thukral, R.
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 195 (02) : 663 - 668
  • [7] On the convergence of extended Newton-type method for solving variational inclusions
    Rashid, M. H.
    COGENT MATHEMATICS, 2014, 1
  • [8] On the DSM Newton-type method
    Ramm, A. G.
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2012, 38 (1-2) : 523 - 533
  • [9] A parallel Newton-type method for nonlinear model predictive control
    Deng, Haoyang
    Ohtsuka, Toshiyuki
    AUTOMATICA, 2019, 109
  • [10] Derivative free Newton-type method for fuzzy nonlinear equations
    Aal, Mohammad Abdel
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2024, 34 (03): : 234 - 242