Offline and Online Blended Machine Learning for Lithium-Ion Battery Health State Estimation

被引:59
|
作者
She, Chengqi [1 ,2 ]
Li, Yang [2 ]
Zou, Changfu [2 ]
Wik, Torsten [2 ]
Wang, Zhenpo [1 ]
Sun, Fengchun [1 ]
机构
[1] Beijing Inst Technol, Natl Engn Lab Elect Vehicles, Beijing 100081, Peoples R China
[2] Chalmers Univ Technol, Dept Elect Engn, S-41296 Gothenburg, Sweden
关键词
Batteries; Estimation; Integrated circuit modeling; Feature extraction; Battery charge measurement; Aging; Transportation; Incremental capacity analysis (ICA); lithium-ion (Li-ion) batteries; modified random forest regression (mRFR); online machine learning; state-of-health (SOH) estimation; INCREMENTAL CAPACITY; NEURAL-NETWORK; HIGH-POWER; RECOGNITION; MIGRATION; CELLS; MODEL;
D O I
10.1109/TTE.2021.3129479
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This article proposes an adaptive state-of-health (SOH) estimation method for lithium-ion (Li-ion) batteries using machine learning. Practical problems with feature extraction, cell inconsistency, and online implementability are specifically solved using a proposed individualized estimation scheme blending offline model migration with online ensemble learning. First, based on the data of pseudo-open-circuit voltage measured over the battery lifespan, a systematic comparison of different incremental capacity features is conducted to identify a suitable SOH indicator. Next, a pool of candidate models, composed of slope-bias correction (SBC) and radial basis function neural networks (RBFNNs), are trained offline. For online operation, the prediction errors due to cell inconsistency in the target new cell are then mitigated by a proposed modified random forest regression (mRFR)-based ensemble learning process with high adaptability. The results show that compared to prevailing methods, the proposed SBC-RBFNN-mRFR-based scheme can achieve considerably improved SOH estimation accuracy (15%) while only a small amount of early-age data and online measurements are needed for practical operation. Furthermore, the applicability of the proposed SBC-RBFNN-mRFR algorithms to real-world operation is validated using measured data from electric vehicles, and it is shown that a 38% improvement in estimation accuracy can be achieved.
引用
收藏
页码:1604 / 1618
页数:15
相关论文
共 50 条
  • [31] A review of non-probabilistic machine learning-based state of health estimation techniques for Lithium-ion battery
    Sui, Xin
    He, Shan
    Vilsen, Soren B.
    Meng, Jinhao
    Teodorescu, Remus
    Stroe, Daniel-Ioan
    APPLIED ENERGY, 2021, 300
  • [32] Lithium-Ion Battery Estimation in Online Framework Using Extreme Gradient Boosting Machine Learning Approach
    Jafari, Sadiqa
    Shahbazi, Zeinab
    Byun, Yung-Cheol
    Lee, Sang-Joon
    MATHEMATICS, 2022, 10 (06)
  • [33] A Flexible Online State of Health Estimation Approach for Lithium -ion Battery
    Linghu, Jinqing
    Kang, Longyun
    Luo, Xuan
    Lu, Chusheng
    Lin, Hongye
    Zhao, Zixian
    2020 IEEE 9TH INTERNATIONAL POWER ELECTRONICS AND MOTION CONTROL CONFERENCE (IPEMC2020-ECCE ASIA), 2020, : 2195 - 2201
  • [34] State of Charge and State of Health estimation in large lithium-ion battery packs
    Bhaskar, Kiran
    Kumar, Ajith
    Bunce, James
    Pressman, Jacob
    Burkell, Neil
    Miller, Nathan
    Rahn, Christopher D.
    2023 AMERICAN CONTROL CONFERENCE, ACC, 2023, : 3075 - 3080
  • [35] Estimation of Lithium-ion Battery State of Charge
    Zhang Di
    Ma Yan
    Bai Qing-Wen
    2011 30TH CHINESE CONTROL CONFERENCE (CCC), 2011, : 6256 - 6260
  • [36] Transfer Learning Techniques for the Lithium-Ion Battery State of Charge Estimation
    Eleftheriadis, Panagiotis
    Giazitzis, Spyridon
    Leva, Sonia
    Ogliari, Emanuele
    IEEE ACCESS, 2024, 12 : 993 - 1004
  • [37] Enhanced state-of-charge and state-of-health estimation of lithium-ion battery incorporating machine learning and swarm intelligence algorithm
    Wang, Chengchao
    Su, Yingying
    Ye, Jinlu
    Xu, Peihang
    Xu, Enyong
    Ouyang, Tiancheng
    JOURNAL OF ENERGY STORAGE, 2024, 83
  • [38] Comparison-Transfer Learning Based State-of-Health Estimation for Lithium-Ion Battery
    Liu, Wei
    Gao, Songchen
    Yan, Wendi
    JOURNAL OF ELECTROCHEMICAL ENERGY CONVERSION AND STORAGE, 2024, 21 (04)
  • [39] Online estimation of the state of charge of a lithium-ion battery based on the fusion model
    Wang X.-L.
    Jin H.-Q.
    Liu X.-Y.
    Gongcheng Kexue Xuebao/Chinese Journal of Engineering, 2020, 42 (09): : 1200 - 1208
  • [40] State of health estimation of lithium-ion battery considering sensor uncertainty
    Zeng, Yusheng
    Meng, Jinhao
    Peng, Jichang
    Feng, Fei
    Yang, Fangfang
    JOURNAL OF ENERGY STORAGE, 2023, 72