Offline and Online Blended Machine Learning for Lithium-Ion Battery Health State Estimation

被引:59
|
作者
She, Chengqi [1 ,2 ]
Li, Yang [2 ]
Zou, Changfu [2 ]
Wik, Torsten [2 ]
Wang, Zhenpo [1 ]
Sun, Fengchun [1 ]
机构
[1] Beijing Inst Technol, Natl Engn Lab Elect Vehicles, Beijing 100081, Peoples R China
[2] Chalmers Univ Technol, Dept Elect Engn, S-41296 Gothenburg, Sweden
关键词
Batteries; Estimation; Integrated circuit modeling; Feature extraction; Battery charge measurement; Aging; Transportation; Incremental capacity analysis (ICA); lithium-ion (Li-ion) batteries; modified random forest regression (mRFR); online machine learning; state-of-health (SOH) estimation; INCREMENTAL CAPACITY; NEURAL-NETWORK; HIGH-POWER; RECOGNITION; MIGRATION; CELLS; MODEL;
D O I
10.1109/TTE.2021.3129479
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This article proposes an adaptive state-of-health (SOH) estimation method for lithium-ion (Li-ion) batteries using machine learning. Practical problems with feature extraction, cell inconsistency, and online implementability are specifically solved using a proposed individualized estimation scheme blending offline model migration with online ensemble learning. First, based on the data of pseudo-open-circuit voltage measured over the battery lifespan, a systematic comparison of different incremental capacity features is conducted to identify a suitable SOH indicator. Next, a pool of candidate models, composed of slope-bias correction (SBC) and radial basis function neural networks (RBFNNs), are trained offline. For online operation, the prediction errors due to cell inconsistency in the target new cell are then mitigated by a proposed modified random forest regression (mRFR)-based ensemble learning process with high adaptability. The results show that compared to prevailing methods, the proposed SBC-RBFNN-mRFR-based scheme can achieve considerably improved SOH estimation accuracy (15%) while only a small amount of early-age data and online measurements are needed for practical operation. Furthermore, the applicability of the proposed SBC-RBFNN-mRFR algorithms to real-world operation is validated using measured data from electric vehicles, and it is shown that a 38% improvement in estimation accuracy can be achieved.
引用
收藏
页码:1604 / 1618
页数:15
相关论文
共 50 条
  • [21] Online Thermal State Estimation of High Power Lithium-ion Battery
    Kim, Hyunjae
    Kim, Sunuwe
    Kim, Taejin
    Hu, Chao
    Youn, Byeng D.
    2015 IEEE CONFERENCE ON PROGNOSTICS AND HEALTH MANAGEMENT (PHM), 2015,
  • [22] An evolutionary framework for lithium-ion battery state of health estimation
    Cai, Lei
    Meng, Jinhao
    Stroe, Daniel-Ioan
    Luo, Guangzhao
    Teodorescu, Remus
    JOURNAL OF POWER SOURCES, 2019, 412 : 615 - 622
  • [23] A fast estimation algorithm for lithium-ion battery state of health
    Tang, Xiaopeng
    Zou, Changfu
    Yao, Ke
    Chen, Guohua
    Liu, Boyang
    He, Zhenwei
    Gao, Furong
    JOURNAL OF POWER SOURCES, 2018, 396 : 453 - 458
  • [24] State of health confidence estimation for lithium-ion battery based on probabilistic ensemble learning
    Wang, Rui
    Song, Chunyue
    Chen, Sikai
    Zhao, Jun
    TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2024, 46 (05) : 871 - 885
  • [25] Online Estimation of Lithium-Ion Battery Capacity Using Transfer Learning
    Shen, Sheng
    Sadoughi, Mohammadkazem
    Hu, Chao
    2019 IEEE TRANSPORTATION ELECTRIFICATION CONFERENCE AND EXPO (ITEC), 2019,
  • [26] State of Charge Estimation of Lithium-Ion Battery for Electric Vehicles Using Machine Learning Algorithms
    Chandran, Venkatesan
    Patil, Chandrashekhar K.
    Karthick, Alagar
    Ganeshaperumal, Dharmaraj
    Rahim, Robbi
    Ghosh, Aritra
    WORLD ELECTRIC VEHICLE JOURNAL, 2021, 12 (01):
  • [27] A study of different machine learning algorithms for state of charge estimation in lithium-ion battery pack
    Maurya, Mangesh
    Gawade, Shashank
    Zope, Neha
    ENERGY STORAGE, 2024, 6 (04)
  • [28] State of Health Estimation for Lithium-ion Battery Using Fuzzy Entropy and Support Vector Machine
    Sui, Xin
    He, Shan
    Stroe, Daniel-Ioan
    Teodorescu, Remus
    2020 IEEE 9TH INTERNATIONAL POWER ELECTRONICS AND MOTION CONTROL CONFERENCE (IPEMC2020-ECCE ASIA), 2020, : 1417 - 1422
  • [29] Lithium-ion Battery State-of-Health Estimation via Histogram Data, Principal Component Analysis, and Machine Learning
    Chen, Junran
    Kollmeyer, Phillip
    Chiang, Fei
    Emadi, Ali
    2023 IEEE TRANSPORTATION ELECTRIFICATION CONFERENCE & EXPO, ITEC, 2023,
  • [30] State of health estimation of lithium-ion battery cell based on optical thermometry with physics-informed machine learning
    Jang, Jeongwoo
    Jo, Junhyoung
    Kim, Jinsu
    Lee, Seungmin
    Lee, Tonghun
    Yoo, Jihyung
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 140