Graphene Oxide Substrate Promotes Neurotrophic Factor Secretion and Survival of Human Schwann-Like Adipose Mesenchymal Stromal Cells

被引:15
|
作者
Llewellyn, Steffan H. [1 ,2 ,3 ]
Faroni, Alessandro [1 ]
Iliut, Maria [2 ,3 ]
Bartlam, Cian [2 ,3 ,4 ]
Vijayaraghavan, Aravind [2 ,3 ]
Reid, Adam J. [1 ,5 ]
机构
[1] Univ Manchester, Manchester Acad Hlth Sci Ctr, Sch Biol Sci,Fac Biol Med & Hlth, Blond Mclndoe Labs,Div Cell Matrix Biol & Regener, Manchester M13 9PL, Lancs, England
[2] Univ Manchester, Dept Mat, Manchester M13 9PL, Lancs, England
[3] Univ Manchester, Natl Graphene Inst, Manchester M13 9PL, Lancs, England
[4] Bundeswehr Univ Munich, Inst Phys, EIT 2, D-85577 Neubiberg, Germany
[5] Manchester Univ NHS Fdn Trust, Manchester Acad Hlth Sci Ctr, Dept Plast Surg & Burns, Wythenshawe Hosp, Manchester M23 9LT, Lancs, England
来源
ADVANCED BIOLOGY | 2021年 / 5卷 / 04期
基金
英国工程与自然科学研究理事会;
关键词
adipose stem cells; graphene oxide; nerve regeneration; peripheral nerve injuries; Schwann cells; STEM-CELLS; DIFFERENTIATION; RECOVERY; ENHANCE; GROWTH;
D O I
10.1002/adbi.202000271
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
Mesenchymal stromal cells from adipose tissue (AD-MSCs) exhibit favorable clinical traits for autologous transplantation and can develop 'Schwann-like' phenotypes (sAD-MSCs) to improve peripheral nerve regeneration, where severe injuries yield insufficient recovery. However, sAD-MSCs regress without biochemical stimulation and detach from conduits under unfavorable transplant conditions, negating their paracrine effects. Graphene-derived materials support AD-MSC attachment, regulating cell adhesion and function through physiochemistry and topography. Graphene oxide (GO) is a suitable substrate for human sAD-MSCs incubation toward severe peripheral nerve injuries by evaluating transcriptome changes, neurotrophic factor expression over a 7-days period, and cell viability in apoptotic conditions is reported. Transcriptome changes from GO incubation across four patients are minor compared to biological variance. Nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and glial-derived neurotrophic factor (GDNF) gene expression is unchanged from sAD-MSCs on GO substrates, but NGF and GDNF protein secretion increase at day 3 and 7. Secretome changes do not improve dorsal root ganglia neuron axon regeneration in conditioned media culture models. Fewer sAD-MSCs detach from GO substrates compared to glass following phosphate buffer saline exposure, which simulates apoptotic conditions. Overall, GO substrates are compatible with sAD-MSC primed for peripheral nerve regeneration strategies and protect the cell population in harsh environments.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Differentiation of Human Tonsil-Derived Mesenchymal Stem Cells into Schwann-Like Cells Improves Neuromuscular Function in a Mouse Model of Charcot-Marie-Tooth Disease Type 1A
    Park, Saeyoung
    Jung, Namhee
    Myung, Seoha
    Choi, Yoonyoung
    Chung, Ki Wha
    Choi, Byung-Ok
    Jung, Sung-Chul
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2018, 19 (08)
  • [42] Human Mesenchymal Stem/Stromal Cells Engineered to Produce Brain-derived Neurotrophic Factor for the Future Treatment of Huntington's Disease
    Pollock, K.
    Stewart, H.
    Cary, W.
    Nelson, H.
    Hendrix, K.
    Nacey, C.
    Pepper, K.
    Fink, K. D.
    Gruenloh, W.
    Annett, G.
    Tempkin, T.
    Wheelock, V.
    Nolta, J. A.
    NEUROTHERAPEUTICS, 2015, 12 (01) : 264 - 264
  • [43] Long-Term Impact of Zinc Oxide Nanoparticles on Differentiation and Cytokine Secretion of Human Adipose-Derived Stromal Cells
    Radeloff, Katrin
    Radeloff, Andreas
    Tirado, Mario Ramos
    Scherzad, Agmal
    Hagen, Rudolf
    Kleinsasser, Norbert H.
    Hackenberg, Stephan
    MATERIALS, 2019, 12 (11)
  • [44] The Combination of Adipose-derived Schwann-like Cells and Acellular Nerve Allografts Promotes Sciatic Nerve Regeneration and Repair through the JAK2/STAT3 Signaling Pathway in Rats
    Fu, Xiu-mei
    Wang, Ying
    Fu, Wen-liang
    Liu, Dong-hui
    Zhang, Cheng-yun
    Wang, Qiao-ling
    Tong, Xiao-jie
    NEUROSCIENCE, 2019, 422 : 134 - 145
  • [45] NITRIC OXIDE SUPPRESSES THE SECRETION OF VASCULAR ENDOTHELIAL GROWTH FACTOR AND HEPATOCYTE GROWTH FACTOR FROM HUMAN MESENCHYMAL STEM CELLS
    Wang, Yue
    Crisostomo, Paul R.
    Wang, Meijing
    Weil, Brent
    Abarbanell, Aaron
    Poynter, Jeffrey
    Manukyan, Mariuxi C.
    Meldrum, Daniel R.
    SHOCK, 2008, 30 (05): : 527 - 531
  • [46] A Substrate-Mimicking Basement Membrane Drives the Organization of Human Mesenchymal Stromal Cells and Endothelial Cells Into Perivascular Niche-Like Structures
    Perugini, Valeria
    Santin, Matteo
    FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2021, 9
  • [47] Enhanced Osteogenic Commitment of Human Mesenchymal Stem Cells on Polyethylene Glycol-Based Cryogel with Graphene Oxide Substrate
    Kim, Hwan D.
    Kim, Jiyong
    Koh, Rachel H.
    Shim, Jimin
    Lee, Jong-Chan
    Kim, Tae-Il
    Hwang, Nathaniel S.
    ACS BIOMATERIALS SCIENCE & ENGINEERING, 2017, 3 (10): : 2470 - 2479
  • [48] Notoginsenoside R1 Promotes Migration, Adhesin, Spreading, and Osteogenic Differentiation of Human Adipose Tissue-Derived Mesenchymal Stromal Cells
    Wang, Haiyan
    Yan, Yongyong
    Lan, Haifeng
    Wei, Nan
    Zheng, Zhichao
    Wu, Lihong
    Jaspers, Richard T.
    Wu, Gang
    Pathak, Janak L.
    MOLECULES, 2022, 27 (11):
  • [49] Insulin-Like Growth Factor-I Enhances Proliferation and Differentiation of Human Mesenchymal Stromal Cells In Vitro
    Doorn, Joyce
    Roberts, Scott J.
    Hilderink, Janneke
    Groen, Nathalie
    van Apeldoorn, Aart
    van Blitterswijk, Clemens
    Schrooten, Jan
    de Boer, Jan
    TISSUE ENGINEERING PART A, 2013, 19 (15-16) : 1817 - 1828
  • [50] Extracellular Matrix Molecules Enhance the Neurotrophic Effect of Schwann Cell-Like Differentiated Adipose-Derived Stem Cells and Increase Cell Survival Under Stress Conditions
    di Summa, Pietro G.
    Kalbermatten, Daniel F.
    Raffoul, Wassim
    Terenghi, Giorgio
    Kingham, Paul J.
    TISSUE ENGINEERING PART A, 2013, 19 (3-4) : 368 - 379