Graphene Oxide Substrate Promotes Neurotrophic Factor Secretion and Survival of Human Schwann-Like Adipose Mesenchymal Stromal Cells

被引:15
|
作者
Llewellyn, Steffan H. [1 ,2 ,3 ]
Faroni, Alessandro [1 ]
Iliut, Maria [2 ,3 ]
Bartlam, Cian [2 ,3 ,4 ]
Vijayaraghavan, Aravind [2 ,3 ]
Reid, Adam J. [1 ,5 ]
机构
[1] Univ Manchester, Manchester Acad Hlth Sci Ctr, Sch Biol Sci,Fac Biol Med & Hlth, Blond Mclndoe Labs,Div Cell Matrix Biol & Regener, Manchester M13 9PL, Lancs, England
[2] Univ Manchester, Dept Mat, Manchester M13 9PL, Lancs, England
[3] Univ Manchester, Natl Graphene Inst, Manchester M13 9PL, Lancs, England
[4] Bundeswehr Univ Munich, Inst Phys, EIT 2, D-85577 Neubiberg, Germany
[5] Manchester Univ NHS Fdn Trust, Manchester Acad Hlth Sci Ctr, Dept Plast Surg & Burns, Wythenshawe Hosp, Manchester M23 9LT, Lancs, England
来源
ADVANCED BIOLOGY | 2021年 / 5卷 / 04期
基金
英国工程与自然科学研究理事会;
关键词
adipose stem cells; graphene oxide; nerve regeneration; peripheral nerve injuries; Schwann cells; STEM-CELLS; DIFFERENTIATION; RECOVERY; ENHANCE; GROWTH;
D O I
10.1002/adbi.202000271
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
Mesenchymal stromal cells from adipose tissue (AD-MSCs) exhibit favorable clinical traits for autologous transplantation and can develop 'Schwann-like' phenotypes (sAD-MSCs) to improve peripheral nerve regeneration, where severe injuries yield insufficient recovery. However, sAD-MSCs regress without biochemical stimulation and detach from conduits under unfavorable transplant conditions, negating their paracrine effects. Graphene-derived materials support AD-MSC attachment, regulating cell adhesion and function through physiochemistry and topography. Graphene oxide (GO) is a suitable substrate for human sAD-MSCs incubation toward severe peripheral nerve injuries by evaluating transcriptome changes, neurotrophic factor expression over a 7-days period, and cell viability in apoptotic conditions is reported. Transcriptome changes from GO incubation across four patients are minor compared to biological variance. Nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and glial-derived neurotrophic factor (GDNF) gene expression is unchanged from sAD-MSCs on GO substrates, but NGF and GDNF protein secretion increase at day 3 and 7. Secretome changes do not improve dorsal root ganglia neuron axon regeneration in conditioned media culture models. Fewer sAD-MSCs detach from GO substrates compared to glass following phosphate buffer saline exposure, which simulates apoptotic conditions. Overall, GO substrates are compatible with sAD-MSC primed for peripheral nerve regeneration strategies and protect the cell population in harsh environments.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Brain-derived neurotrophic factor promotes survival and chemoprotection of human neuroblastoma cells
    Middlemas, DS
    Kihl, BK
    Zhou, JF
    Zhu, XY
    JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (23) : 16451 - 16460
  • [22] Comparing brain-derived neurotrophic factor and ciliary neurotrophic factor secretion of induced neurotrophic factor secreting cells from human adipose and bone marrow-derived stem cells
    Razavi, Shahnaz
    Razavi, Mohamad Reza
    Esfahani, Hamid Zarkesh
    Kazemi, Mohammad
    Mostafavi, Fatemeh Sadat
    DEVELOPMENT GROWTH & DIFFERENTIATION, 2013, 55 (06) : 648 - 655
  • [23] Human platelet lysate stimulates neurotrophic properties of human adipose-derived stem cells better than Schwann cell-like cells
    Brambilla, Stefania
    Guiotto, Martino
    Torretta, Enrica
    Armenia, Ilaria
    Moretti, Matteo
    Gelfi, Cecilia
    Palombella, Silvia
    di Summa, Pietro G.
    STEM CELL RESEARCH & THERAPY, 2023, 14 (01)
  • [24] Human platelet lysate stimulates neurotrophic properties of human adipose-derived stem cells better than Schwann cell-like cells
    Stefania Brambilla
    Martino Guiotto
    Enrica Torretta
    Ilaria Armenia
    Matteo Moretti
    Cecilia Gelfi
    Silvia Palombella
    Pietro G. di Summa
    Stem Cell Research & Therapy, 14
  • [25] Newly Generated 3D Schwann-Like Cell Spheroids From Human Adipose-Derived Stem Cells Using a Modified Protocol
    Chen, Shuhai
    Ikemoto, Tetsuya
    Tokunaga, Takuya
    Okikawa, Shouhei
    Miyazaki, Katsuki
    Yamada, Shinichiro
    Saito, Yu
    Morine, Yuji
    Shimada, Mitsuo
    CELL TRANSPLANTATION, 2022, 31
  • [26] Overexpression of tropomyosin receptor kinase A improves the survival and Schwann-like cell differentiation of bone marrow stromal cells in nerve grafts for bridging rat sciatic nerve defects
    Zheng, Meige
    Duan, Junxiu
    He, Zhendan
    Wang, Zhiwei
    Mu, Shuhua
    Zeng, Zhiwen
    Qu, Junle
    Zhang, Jian
    Wang, Dong
    CYTOTHERAPY, 2016, 18 (10) : 1256 - 1269
  • [27] Human bone marrow-derived mesenchymal stem cells secrete brain-derived neurotrophic factor which promotes neuronal survival in vitro
    Wilkins, Alastair
    Kemp, Kevin
    Ginty, Mark
    Hares, Kelly
    Mallam, Elizabeth
    Scolding, Neil
    STEM CELL RESEARCH, 2009, 3 (01) : 63 - 70
  • [28] Mycobacterium leprae induces insulin-like growth factor and promotes survival of Schwann cells upon serum withdrawal
    Rodrigues, Luciana Silva
    Maeda, Elisa da Silva
    Costa Moreira, Maria Elisabete
    Tempone, Antonio Jorge
    Lobato, Livia Silva
    Ribeiro-Resende, Victor Tulio
    Alves, Lucineia
    Rossle, Shaila
    Lopes, Ulisses Gazos
    Vidal Pessolani, Maria Cristina
    CELLULAR MICROBIOLOGY, 2010, 12 (01) : 42 - 54
  • [29] Transdifferentiation of brain-derived neurotrophic factor (BDNF)-secreting mesenchymal stem cells significantly enhance BDNF secretion and Schwann cell marker proteins
    De la Rosa, Metzere Bierlein
    Sharma, Anup D.
    Mallapragada, Surya K.
    Sakaguchi, Donald S.
    JOURNAL OF BIOSCIENCE AND BIOENGINEERING, 2017, 124 (05) : 572 - 582
  • [30] Survival of human mesenchymal stromal cells from bone marrow and adipose tissue after xenogenic transplantation in immunocompetent mice
    Niemeyer, P.
    Vohrer, J.
    Schmal, H.
    Kasten, P.
    Fellenberg, J.
    Suedkamp, N. P.
    Mehlhorn, A. T.
    CYTOTHERAPY, 2008, 10 (08) : 784 - 795