Environmental performances and energy efficiencies of various urban green infrastructures: A life-cycle assessment

被引:36
|
作者
Wang, Yafei [1 ,2 ]
Ni, Zhuobiao [1 ,2 ]
Hu, Mengmeng [1 ]
Li, Jing [1 ]
Wang, Yue [1 ]
Lu, Zhongming [3 ]
Chen, Shaoqing [1 ,2 ]
Xia, Beicheng [1 ,2 ]
机构
[1] Sun Yat Sen Univ, Sch Environm Sci & Engn, 135 Xingang Xi Rd, Guangzhou 510275, Guangdong, Peoples R China
[2] Sun Yat Sen Univ, Guangdong Prov Key Lab Environm Pollut Control &, 135 Xingang Xi Rd, Guangzhou 510275, Guangdong, Peoples R China
[3] Hong Kong Univ Sci & Technol, Div Environm & Sustainabil, Clear Water Bay, Kowloon, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Cradle-to-Grave; Green roof; Greenway; Grove; Energy saving; COST-BENEFIT-ANALYSIS; POWER-GENERATION; ROOFS; TREES; IMPACT; TEMPERATURE; MANAGEMENT; SUBSTRATE; REDUCTION; FACADES;
D O I
10.1016/j.jclepro.2019.119244
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Urban green infrastructures have been well recognized for their roles in providing ecosystem services in cities. However, their environmental performances have not been fully understood from a life-cycle perspective. In this study, we evaluated the life-cycle environmental performances and energy efficiencies of three types of green infrastructure, i.e. green roof, greenway, and grove that are increasingly built in cities. Our analysis covered all phases of the life-cycle including extraction and construction, use and maintenance, end-of-life, and transportation. Results confirm the environmental improvements of the green roof, greenway, and grove in most of the addressed impact categories. The energy saving in the use and maintenance phase contributed a significant part to these improvements, while the construction material in the extraction and construction phase had a dominant share in the environmental impacts. The grove and greenway showed better environmental performances than the green roof. The extensive use of compost for the greenway and grove could release toxic substances to the environment, and offset environmental improvements or even resulted in a negative consequence to EP of the greenway. The utilization of substrate and waste disposal for the green roof caused relatively high impacts on the environment. Sensitivity analysis shows a 50% reduction of the energy saving weakened the environmental improvements of the green roof, greenway and grove in all categories, and particularly exacerbated the environmental impacts on EP and CADP for the green roof, AP for the greenway and EP for the grove; and an increased waste recycling and reuse rates will greatly enhance the environmental improvements of the green roof. (c) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] ENERGY LIFE-CYCLE ASSESSMENT OF SOYBEAN BIODIESEL REVISITED
    Pradhan, A.
    Shrestha, D. S.
    McAloon, A.
    Yee, W.
    Haas, M.
    Duffield, J. A.
    TRANSACTIONS OF THE ASABE, 2011, 54 (03) : 1031 - 1039
  • [42] Explorative life-cycle assessment of renovating existing urban housingstocks
    Osterbring, Magnus
    Mata, Erika
    Thuvander, Liane
    Wallbaum, Holger
    BUILDING AND ENVIRONMENT, 2019, 165
  • [43] Urban green infrastructure: perspectives on life-cycle thinking for holistic assessments
    Romanovska, Linda
    SUSTAINABLE BUILT ENVIRONMENT CONFERENCE 2019 TOKYO (SBE19TOKYO) - BUILT ENVIRONMENT IN AN ERA OF CLIMATE CHANGE: HOW CAN CITIES AND BUILDINGS ADAPT?, 2019, 294
  • [44] Environmental Life-Cycle Assessment of Winter Maintenance Treatments for Roadways
    Fitch, G. Michael
    Smith, James A.
    Clarens, Andres F.
    JOURNAL OF TRANSPORTATION ENGINEERING-ASCE, 2013, 139 (02): : 138 - 146
  • [45] SOFIAS - Software for life-cycle assessment and environmental rating of buildings
    Oregi Isasi, X.
    Tenorio, J. A.
    Gazulla, C.
    Zabalza, I.
    Cambra, D.
    Leao, S. O.
    Mabe, L.
    Otero, S.
    Raigosa, J.
    INFORMES DE LA CONSTRUCCION, 2016, 68 (542)
  • [46] Life-cycle environmental and economic assessment of medical waste treatment
    Hong, Jingmin
    Zhan, Song
    Yu, Zhaohe
    Hong, Jinglan
    Qi, Congcong
    JOURNAL OF CLEANER PRODUCTION, 2018, 174 : 65 - 73
  • [47] Environmental life-cycle assessment of concrete produced in the United States
    Hottle, Troy
    Hawkins, Troy R.
    Chiquelin, Caitlin
    Lange, Bryan
    Young, Ben
    Sun, Pingping
    Elgowainy, Amgad
    Wang, Michael
    JOURNAL OF CLEANER PRODUCTION, 2022, 363
  • [48] Application of life-cycle assessment to type III environmental declarations
    Lee K.M.
    Park P.
    Environmental Management, 2001, 28 (04) : 533 - 546
  • [49] Life-cycle assessment: Viewing environmental protection outside the box
    Curran, MA
    ENVIRONMENTAL PROGRESS, 2000, 19 (02): : S2 - S3
  • [50] Infrastructures and life-cycle cost-benefit analysis
    Thoft-Christensen, Palle
    STRUCTURE AND INFRASTRUCTURE ENGINEERING, 2012, 8 (05) : 507 - 516