Environmental performances and energy efficiencies of various urban green infrastructures: A life-cycle assessment

被引:36
|
作者
Wang, Yafei [1 ,2 ]
Ni, Zhuobiao [1 ,2 ]
Hu, Mengmeng [1 ]
Li, Jing [1 ]
Wang, Yue [1 ]
Lu, Zhongming [3 ]
Chen, Shaoqing [1 ,2 ]
Xia, Beicheng [1 ,2 ]
机构
[1] Sun Yat Sen Univ, Sch Environm Sci & Engn, 135 Xingang Xi Rd, Guangzhou 510275, Guangdong, Peoples R China
[2] Sun Yat Sen Univ, Guangdong Prov Key Lab Environm Pollut Control &, 135 Xingang Xi Rd, Guangzhou 510275, Guangdong, Peoples R China
[3] Hong Kong Univ Sci & Technol, Div Environm & Sustainabil, Clear Water Bay, Kowloon, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Cradle-to-Grave; Green roof; Greenway; Grove; Energy saving; COST-BENEFIT-ANALYSIS; POWER-GENERATION; ROOFS; TREES; IMPACT; TEMPERATURE; MANAGEMENT; SUBSTRATE; REDUCTION; FACADES;
D O I
10.1016/j.jclepro.2019.119244
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Urban green infrastructures have been well recognized for their roles in providing ecosystem services in cities. However, their environmental performances have not been fully understood from a life-cycle perspective. In this study, we evaluated the life-cycle environmental performances and energy efficiencies of three types of green infrastructure, i.e. green roof, greenway, and grove that are increasingly built in cities. Our analysis covered all phases of the life-cycle including extraction and construction, use and maintenance, end-of-life, and transportation. Results confirm the environmental improvements of the green roof, greenway, and grove in most of the addressed impact categories. The energy saving in the use and maintenance phase contributed a significant part to these improvements, while the construction material in the extraction and construction phase had a dominant share in the environmental impacts. The grove and greenway showed better environmental performances than the green roof. The extensive use of compost for the greenway and grove could release toxic substances to the environment, and offset environmental improvements or even resulted in a negative consequence to EP of the greenway. The utilization of substrate and waste disposal for the green roof caused relatively high impacts on the environment. Sensitivity analysis shows a 50% reduction of the energy saving weakened the environmental improvements of the green roof, greenway and grove in all categories, and particularly exacerbated the environmental impacts on EP and CADP for the green roof, AP for the greenway and EP for the grove; and an increased waste recycling and reuse rates will greatly enhance the environmental improvements of the green roof. (c) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Life-cycle energy and environmental emissions of cargo ships
    Zhang, Yiqi
    Chang, Yuan
    Wang, Changbo
    Fung, Jimmy C. H.
    Lau, Alexis K. H.
    JOURNAL OF INDUSTRIAL ECOLOGY, 2022, 26 (06) : 2057 - 2068
  • [32] Life-cycle assessment modelling and life-cycle assessment evaluation of a triboelement
    Wani, M. F.
    Anand, A.
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART J-JOURNAL OF ENGINEERING TRIBOLOGY, 2010, 224 (J11) : 1209 - 1220
  • [33] Consequential Environmental and Economic Life Cycle Assessment of Green and Gray Stormwater Infrastructures for Combined Sewer Systems
    Wang, Ranran
    Eckelman, Matthew J.
    Zimmerman, Julie B.
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2013, 47 (19) : 11189 - 11198
  • [34] Analysis of life-cycle boundaries for environmental and economic assessment of building energy refurbishment projects
    Oregi, Xabat
    Hernandez, Patxi
    Hernandez, Rufino
    ENERGY AND BUILDINGS, 2017, 136 : 12 - 25
  • [35] LIFE-CYCLE ASSESSMENT
    WEISSMAN, AB
    ISSUES IN SCIENCE AND TECHNOLOGY, 1994, 11 (01) : 18 - 18
  • [36] Life-cycle assessment
    Harsch, M
    Schuckert, M
    Eyerer, P
    Saur, K
    ADVANCED MATERIALS & PROCESSES, 1996, 149 (06): : 43 - 46
  • [37] Life-cycle assessment
    Riebel, P
    PULP & PAPER-CANADA, 2002, 103 (04) : 57 - 57
  • [38] Life cycle assessment and environmental impact analysis for green energy production plants
    Gabbar, Hossam A.
    PROCEEDINGS OF 2007 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2007, : 2058 - 2063
  • [39] Life-cycle assessment - An abridged life-cycle assessment of electric vehicle batteries
    Steele, NLC
    Allen, DT
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1998, 32 (01) : 40A - 46A
  • [40] Assessment of energy performance in the life-cycle of biogas production
    Berglund, M
    Börjesson, P
    BIOMASS & BIOENERGY, 2006, 30 (03): : 254 - 266