CONVEXITY IN TREE SPACES

被引:27
|
作者
Lin, Bo [1 ]
Sturmfels, Bernd [1 ]
Tang, Xiaoxian [2 ]
Yoshida, Ruriko [3 ]
机构
[1] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
[2] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
[3] Naval Postgrad Sch, Dept Operat Res, Monterey, CA 93940 USA
基金
美国国家科学基金会;
关键词
Billera-Holmes-Vogtman metric; ultrametric; CAT(0) space; geodesic triangle; phylogenetic tree; polytope; tropical convexity; GEOMETRY; APPROXIMATION; ALGORITHM;
D O I
10.1137/16M1079841
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the geometry of metrics and convexity structures on the space of phylogenetic trees, which is here realized as the tropical linear space of all ultrametrics. The CAT(0) metric of Billera Holmes Vogtman arises from the theory of orthant spaces. While its geodesics can be computed by the Owen-Provan algorithm, geodesic triangles are complicated. We show that the dimension of such a triangle can be arbitrarily high. Tropical convexity and the tropical metric exhibit properties that are desirable for geometric statistics, such as geodesics of small depth.
引用
收藏
页码:2015 / 2038
页数:24
相关论文
共 50 条
  • [41] ON THE CONVEXITY OF SOME BANACH SPACES
    SHEN YULIANG
    Chinese Annals of Mathematics, 2001, (01) : 75 - 84
  • [42] On Uniform Convexity of Banach Spaces
    Cheng, Qing Jin
    Wang, Bo
    Wang, Cui Ling
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2011, 27 (03) : 587 - 594
  • [43] ON FUZZY TOPOLOGY FUZZY CONVEXITY SPACES AND FUZZY LOCAL CONVEXITY
    ROSA, MV
    FUZZY SETS AND SYSTEMS, 1994, 62 (01) : 97 - 100
  • [44] UNIFORM CONVEXITY AND STRICT CONVEXITY IN METRIC LINEAR-SPACES
    SASTRY, KPR
    NAIDU, SVR
    MATHEMATISCHE NACHRICHTEN, 1981, 104 : 331 - 347
  • [45] Convexity and Concavity Detection in Computational Graphs: Tree Walks for Convexity Assessment
    Fourer, Robert
    Maheshwari, Chandrakant
    Neumaier, Arnold
    Orban, Dominique
    Schichl, Hermann
    INFORMS JOURNAL ON COMPUTING, 2010, 22 (01) : 26 - 43
  • [46] A CHARACTERIZATION OF B-CONVEXITY AND J-CONVEXITY OF BANACH SPACES
    Mitani, Ken-Ichi
    Saito, Kichi-Suke
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2007, 1 (01): : 33 - 42
  • [47] UNIFORM CONVEXITY AND LOCAL UNIFORM CONVEXITY OF SYMMETRICAL SPACES OF MEASURABLE OPERATORS
    KRYGIN, AV
    SUKOCHEV, FA
    CHILIN, VI
    DOKLADY AKADEMII NAUK SSSR, 1991, 317 (03): : 555 - 558
  • [48] P-CONVEXITY AND B-CONVEXITY IN BANACH-SPACES
    BROWN, DR
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 187 (01) : 77 - 81
  • [49] Testing Convexity Properties of Tree Colorings
    Eldar Fischer
    Orly Yahalom
    Algorithmica, 2011, 60 : 766 - 805
  • [50] Testing Convexity Properties of Tree Colorings
    Fischer, Eldar
    Yahalom, Orly
    ALGORITHMICA, 2011, 60 (04) : 766 - 805