CONVEXITY IN TREE SPACES

被引:27
|
作者
Lin, Bo [1 ]
Sturmfels, Bernd [1 ]
Tang, Xiaoxian [2 ]
Yoshida, Ruriko [3 ]
机构
[1] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
[2] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
[3] Naval Postgrad Sch, Dept Operat Res, Monterey, CA 93940 USA
基金
美国国家科学基金会;
关键词
Billera-Holmes-Vogtman metric; ultrametric; CAT(0) space; geodesic triangle; phylogenetic tree; polytope; tropical convexity; GEOMETRY; APPROXIMATION; ALGORITHM;
D O I
10.1137/16M1079841
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the geometry of metrics and convexity structures on the space of phylogenetic trees, which is here realized as the tropical linear space of all ultrametrics. The CAT(0) metric of Billera Holmes Vogtman arises from the theory of orthant spaces. While its geodesics can be computed by the Owen-Provan algorithm, geodesic triangles are complicated. We show that the dimension of such a triangle can be arbitrarily high. Tropical convexity and the tropical metric exhibit properties that are desirable for geometric statistics, such as geodesics of small depth.
引用
收藏
页码:2015 / 2038
页数:24
相关论文
共 50 条
  • [31] Convexity in hierarchically hyperbolic spaces
    Russell, Jacob
    Spriano, Davide
    Tran, Hung Cong
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2023, 23 (03): : 1167 - 1248
  • [32] Uniform Convexity in Nonsymmetric Spaces
    Tsar'kov, I. G.
    MATHEMATICAL NOTES, 2021, 110 (5-6) : 773 - 783
  • [33] On uniform convexity of Banach spaces
    Qing Jin Cheng
    Bo Wang
    Cui Ling Wang
    Acta Mathematica Sinica, English Series, 2011, 27 : 587 - 594
  • [34] Exploring Convexity in Normed Spaces
    Babb, Ryan L. Acosta
    AMERICAN MATHEMATICAL MONTHLY, 2025,
  • [35] Convexity and Teichmüller spaces
    Krushkal S.L.
    Lobachevskii Journal of Mathematics, 2017, 38 (2) : 307 - 314
  • [36] δ-convexity in normed linear spaces
    An, PT
    Hai, NN
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2004, 25 (5-6) : 407 - 422
  • [37] Separation properties of convexity spaces
    Kubis, Wieslaw
    JOURNAL OF GEOMETRY, 2022, 74 (1-2) : 110 - 119
  • [38] Convexity properties for cycle spaces
    Barlet, D
    Vâjâitu, V
    MICHIGAN MATHEMATICAL JOURNAL, 2002, 50 (01) : 57 - 70
  • [39] Uniform Convexity and Associate Spaces
    Petteri Harjulehto
    Peter Hästö
    Czechoslovak Mathematical Journal, 2018, 68 : 1011 - 1020
  • [40] A NOTE ON CONVEXITY IN BANACH SPACES
    RUSTON, AF
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1949, 45 (01): : 157 - 159