Koppelman Formulas on Smooth Compact Toric Varieties

被引:0
|
作者
Tryfonos, C. [1 ]
Vidras, A. [1 ]
机构
[1] Univ Cyprus, Dept Math & Stat, POB 20537, CY-1678 Nicosia, Cyprus
关键词
INTEGRAL-REPRESENTATION;
D O I
10.1007/s00025-022-01624-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we derive an explicit Koppelman integral representation formula in terms of the combinatorial data on smooth compact toric varieties for (0, q) smooth forms taking values in specific line bundles. The n-dimensional toric varieties are such that their Newton polyhedron contains the origin and the standard base {e(1), ..., e(n)} of R-n. Applying the above formula one obtains an alternative proof about vanishing of the Dolbeault cohomology groups of (0, q) forms over such smooth compact toric varieties with values in various lines bundles.
引用
收藏
页数:38
相关论文
共 50 条
  • [31] On the Hodge conjecture for quasi-smooth intersections in toric varieties
    Bruzzo, Ugo
    Montoya, William
    SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2021, 15 (02): : 682 - 694
  • [32] On the Hodge conjecture for quasi-smooth intersections in toric varieties
    Ugo Bruzzo
    William Montoya
    São Paulo Journal of Mathematical Sciences, 2021, 15 : 682 - 694
  • [33] BLOW-UPS OF SMOOTH TORIC 3-VARIETIES
    EWALD, G
    ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 1987, 57 : 193 - 201
  • [34] Deformations of smooth complete toric varieties: obstructions and the cup product
    Ilten, Nathan
    Turo, Charles
    ALGEBRA & NUMBER THEORY, 2020, 14 (04) : 907 - 925
  • [35] Koppelman formulas on flag manifolds and harmonic forms
    Samuelsson, Hakan
    Seppaenen, Henrik
    MATHEMATISCHE ZEITSCHRIFT, 2012, 272 (3-4) : 1087 - 1095
  • [36] Koppelman formulas on flag manifolds and harmonic forms
    Håkan Samuelsson
    Henrik Seppänen
    Mathematische Zeitschrift, 2012, 272 : 1087 - 1095
  • [37] On the Integrals over Two-dimensional Compact Complex Toric Varieties
    Ulvert, Olga S.
    JOURNAL OF SIBERIAN FEDERAL UNIVERSITY-MATHEMATICS & PHYSICS, 2010, 3 (04): : 544 - 555
  • [38] Local positivity of line bundles on smooth toric varieties and Cayley polytopes
    Lundman, Anders
    JOURNAL OF SYMBOLIC COMPUTATION, 2016, 74 : 109 - 124
  • [39] Derived categories of centrally-symmetric smooth toric Fano varieties
    Ballard, Matthew R.
    Duncan, Alexander
    McFaddin, Patrick K.
    MATHEMATISCHE NACHRICHTEN, 2022, 295 (02) : 218 - 241
  • [40] K-RINGS OF SMOOTH COMPLETE TORIC VARIETIES AND RELATED SPACES
    Sankaran, Parameswaran
    TOHOKU MATHEMATICAL JOURNAL, 2008, 60 (04) : 459 - 469