Shape factor effect of radiative Cu-Al2O3/H2O hybrid nanofluid flow towards an EMHD plate

被引:59
|
作者
Khashi'ie, Najiyah Safwa [1 ]
Arifin, Norihan Md [2 ]
Sheremet, Mikhail [3 ]
Pop, Ioan [4 ]
机构
[1] Univ Teknikal Malaysia Melaka, Fak Teknol Kejuruteraan Mekanikal & Pembuatan, Durian Tunggal 76100, Melaka, Malaysia
[2] Univ Putra Malaysia, Fac Sci, Dept Math, Upm Serdang 43400, Selangor, Malaysia
[3] Tomsk State Univ, Lab Convect Heat & Mass Transfer, Tomsk, Russia
[4] Babes Bolyai Univ, Dept Math, R-400084 Cluj Napoca, Romania
关键词
Hybrid nanofluid; Stagnation point flow; Shape factor effect; Thermal radiation; HEAT-TRANSFER; THERMAL-CONDUCTIVITY; PARTICLE-SHAPE; DRIVEN; SHEET;
D O I
10.1016/j.csite.2021.101199
中图分类号
O414.1 [热力学];
学科分类号
摘要
This paper aims to analyze the effects of different nanoparticles shape factor, EMHD and radiation parameters for the Cu-Al2O3/H2O nanofluid flow towards a stretching/shrinking Riga plate. The model is simplified into a set of ordinary (similarity) differential equations using the similarity transformation while the existing correlations are used to estimate the thermophysical properties for Cu-Al2O3/H2O. The comparison with previous results is in a good agreement with 0% error. Second solution is found and only exist in certain value of the shrinking parameter which reflects the unstableness of the solution. From the streamlines plot, the second solution dislocates the stagnation line far away from the wall surface to the reverse flow region as compared to the first solution. An increase of 1% EMHD parameter extends the separation value by 0.4%. This reflects the potential of EMHD parameter in delaying the separation process. Further, the heat transfer rate slightly increases with the rise of EMHD, radiation and shape factor parameters. The maximum heat transfer rate is acquirable for the ascendance nanoparticle concentration using blade-shape while the sphere-shape produce the lowest thermal rate. These findings are important in long run where we can plan for the heat transfer optimization of the cooling/heating applications.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Unsteady stagnation point flow past a permeable stretching/shrinking Riga plate in Al2O3-Cu/H2O hybrid nanofluid with thermal radiation
    Zainal, Nurul Amira
    Nazar, Roslinda
    Naganthran, Kohilavani
    Pop, Joan
    INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2022, 32 (08) : 2640 - 2658
  • [32] Unsteady squeezing flow of Cu-Al2O3/water hybrid nanofluid in a horizontal channel with magnetic field
    Khashi'ie, Najiyah Safwa
    Waini, Iskandar
    Arifin, Norihan Md
    Pop, Ioan
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [33] Rotationally symmetric flow of Cu-Al2O3/water hybrid nanofluid over a heated porous boundary
    Tahira, Sahreen
    Mustafa, M.
    Mushtaq, Ammar
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2022, 236 (03) : 1524 - 1534
  • [34] Unsteady squeezing flow of Cu-Al2O3/water hybrid nanofluid in a horizontal channel with magnetic field
    Najiyah Safwa Khashi’ie
    Iskandar Waini
    Norihan Md Arifin
    Ioan Pop
    Scientific Reports, 11
  • [35] Stability analysis and heat transfer of hybrid Cu-Al2O3/H2O nanofluids transport over a stretching surface
    Mabood, F.
    Akinshilo, A. T.
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2021, 123
  • [36] Cu–Al2O3–H2O hybrid nanofluid flow with melting heat transfer, irreversibility analysis and nonlinear thermal radiation
    F. Mabood
    T. A. Yusuf
    W. A. Khan
    Journal of Thermal Analysis and Calorimetry, 2021, 143 : 973 - 984
  • [37] An investigation of the MHD Cu-Al2O3/H2O hybrid-nanofluid in a porous medium across a vertically stretching cylinder incorporating thermal stratification impact
    Paul, Ashish
    Nath, Jintu Mani
    Das, Tusar Kanti
    JOURNAL OF THERMAL ENGINEERING, 2023, 9 (03): : 799 - 810
  • [38] A correlation of nanofluid flow boiling heat transfer based on the experimental results of AlN/H2O and Al2O3/H2O nanofluid
    Wang, Y.
    Deng, K. H.
    Liu, B.
    Wu, J. M.
    Su, G. H.
    EXPERIMENTAL THERMAL AND FLUID SCIENCE, 2017, 80 : 376 - 383
  • [39] Computational analysis of entropy generation optimization for Cu-Al2O3 water-based chemically reactive magnetized radiative hybrid nanofluid flow
    Govind, Pooja
    Sharma, Pooja
    Sharma, B. K.
    Gandhi, Rishu
    Almohsen, Bandar
    Perez, Laura M.
    AIP ADVANCES, 2024, 14 (07)
  • [40] Transportation of nonlinear radiative heat flux in Al2O3-Cu/H2O hybrid nanofluid subject to dissipation energy: Dual solutions analysis
    Rahman, M. Israr Ur
    Khan, M. Ijaz
    Alzahrani, Faris
    Hobiny, Aatef
    AIP ADVANCES, 2020, 10 (10)