Stability analysis and heat transfer of hybrid Cu-Al2O3/H2O nanofluids transport over a stretching surface

被引:33
|
作者
Mabood, F. [1 ]
Akinshilo, A. T. [2 ]
机构
[1] Fanshawe Coll London, Dept Informat Technol, London, ON, Canada
[2] Univ Lagos, Dept Mech Engn, Akoka Yaba, Nigeria
关键词
Hybrid nanofluid; Stability analysis; Thermal radiation; MHD; Numerical method; BOUNDARY-LAYER-FLOW; HYDROMAGNETIC FLOW; MICROPOLAR FLUID; CONVECTIVE FLOW; SHEET; RADIATION;
D O I
10.1016/j.icheatmasstransfer.2021.105215
中图分类号
O414.1 [热力学];
学科分类号
摘要
In this study, the stability of flowing viscous hybrid nanofluid over a stretching surface under uniform magnetic effect and radiation are investigated. The mechanics governing the system of coupled momentum and energy equations are formulated using the Navier Stokes model, which is transformed from the partial form of differential equations into an ordinary form of differentials adopting suitable transforms. As this model is highly nonlinear, the Runge-Kutta Fehlberg numerical method is utilized as a suitable method of analysis. Significant parameters such as radiation, magnetic, and volume concentration effects are studied amongst other pertinent parameters. The result presented graphically reveals a numeric increase of radiation parameter enhances thermal distribution, this connotes an improved heat transfer rate. While the volume concentration-effect reveals velocity decrease with an enhanced nanoparticle concentration. Moreover, it is seen that the velocity decreases with the magnetic parameter but increases with the suction/injection parameter. The fluid temperature enhances with the radiation and Eckert number. The result compared with suitable literature shows good agreement with the present study. Applications of the study include heat exchanger, lubrication, microelectronics, air conditioning, and refrigeration amongst others.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Heat transfer performance of magnetohydrodynamic multiphase nanofluid flow of Cu-Al2O3/H2O over a stretching cylinder
    Alshehry, Azzh Saad
    Yasmin, Humaira
    Ganie, Abdul Hamid
    Shah, Rasool
    OPEN PHYSICS, 2023, 21 (01):
  • [2] Unsteady axisymmetric radiative Cu-Al2O3/H2O flow over a radially stretching/shrinking surface
    Khashi'ie, Najiyah Safwa
    Arifin, Norihan Md
    Pop, Ioan
    CHINESE JOURNAL OF PHYSICS, 2022, 78 : 169 - 179
  • [3] Comparative thermal transport mechanism in Cu-H2O and Cu-Al2O3/H2O nanofluids: numerical investigation
    Khan, Umar
    Adnan
    Ullah, Basharat
    Abdul Wahab, Hafiz
    Ullah, Ikram
    Almuqrin, Muqrin A.
    Khan, Ilyas
    WAVES IN RANDOM AND COMPLEX MEDIA, 2022,
  • [4] Statistical and numerical analysis of unsteady hybrid nanoliquid flows over an elongating surface with oblique Lorentz force: A comparison of Cu-Al2O3/H2O, Cu-Al2O3/CH3OH and Cu-Al2O3/H2O-EG
    Nandi, Susmay
    Kumbhakar, Bidyasagar
    Seth, Gauri Shanker
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2024, 38 (17):
  • [5] Significance of modified Fourier heat flux on Maxwell hybrid (Cu-Al2O3/H2O) nanofluid transport past an inclined stretching cylinder
    Raghu, Alugunuri
    Gajjela, Nagaraju
    Aruna, J.
    Niranjan, H.
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2024, 149 (22) : 12983 - 13001
  • [6] Exploration of entropy analysis and viscous dissipation on radially convective flow of (Cu-Al2O3:H2O) hybrid nanofluid over a stretching disk
    Venkateswarlu, Bhumarapu
    Narayana, Panyam Venkata Satya
    Joo, Sang Woo
    ASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING, 2024, 19 (01)
  • [7] A Novel Hybrid Model for Cu-Al2O3/H2O Nanofluid Flow and Heat Transfer in Convergent/Divergent Channels
    Khan, Umar
    Adnan
    Ahmed, Naveed
    Mohyud-Din, Syed Tauseef
    Baleanu, Dumitru
    Ilyas Khan
    Nisar, Kottakkaran Sooppy
    ENERGIES, 2020, 13 (07)
  • [8] Stability analysis and multiple solution of Cu-Al2O3/H2O nanofluid contains hybrid nanomaterials over a shrinking surface in the presence of viscous dissipation
    Lund, Liaquat Ali
    Omar, Zurni
    Khan, Ilyas
    Seikh, Asiful H.
    Sherif, El-Sayed M.
    Nisar, K. S.
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2020, 9 (01): : 421 - 432
  • [9] HEAT TRANSFER IN WATER BASED NANOFLUIDS (TiO2-H2O, Al2O3-H2O and Cu-H2O) OVER A STRETCHING CYLINDER
    Rahman, M. M.
    Aziz, A.
    INTERNATIONAL JOURNAL OF HEAT AND TECHNOLOGY, 2012, 30 (02) : 31 - 42
  • [10] A comparative investigation of magnetohydrodynamics slip Fe3O4 - H2O and Al2O3 - H2O nanofluids flow and heat transfer over an unsteady vertically curved stretching surface
    Shaiq, Shakil
    Shahzad, Azeem
    Hayat, Umer
    MULTISCALE AND MULTIDISCIPLINARY MODELING EXPERIMENTS AND DESIGN, 2024, 7 (03) : 2671 - 2682