Global optimization: Local minima and transition points

被引:12
|
作者
Floudas, CA [1 ]
Jongen, HT
机构
[1] Princeton Univ, Dept Chem Engn, Princeton, NJ 08544 USA
[2] Rhein Westfal TH Aachen, Dept Math, D-52056 Aachen, Germany
关键词
global optimization; local minima; saddle points; transition points of first order;
D O I
10.1007/s10898-004-0865-1
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We consider the minimization of smooth functions of the Euclidean space with a finite number of stationary points having moderate asymptotic behavior at infinity. The crucial role of transition points of first order (i.e., saddle points of index 1) is emphasized. It is shown that (generically) any two local minima can be connected via an alternating sequence of local minima and transition points of first order. In particular, the graph with local minima as its nodes and first order transition points representing the edges turns out to be connected (Theorem A). On the other hand, any connected (finite) graph can be realized in the above sense by means of a smooth function of three variables having a minimal number of stationary points (Theorem B).
引用
收藏
页码:409 / 415
页数:7
相关论文
共 50 条
  • [41] A class of one-parameter filled functions with the same local minima as the objective function for global optimization problems
    Shang, Youlin
    Sun, Guanglei
    Wang, Xiaoqiang
    Zhang, Roxin
    OPTIMIZATION, 2024,
  • [42] Exceptional points: Global and local aspects
    Heiss, WD
    NONEQUILIBRIUM AND NONLINEAR DYNAMICS IN NUCLEAR AND OTHER FINITE SYSTEMS, 2001, 597 : 311 - 318
  • [43] Finding new local minima in lens design landscapes by constructing saddle points
    Bociort, Florian
    van Turnhout, Maarten
    OPTICAL ENGINEERING, 2009, 48 (06)
  • [44] Local minima in anatomic aperture-based IMRT optimization
    Aubry, J
    Beaulieu, F
    Beaulieu, L
    Tremblay, D
    MEDICAL PHYSICS, 2005, 32 (06) : 1976 - 1976
  • [45] Local minima, marginal functions, and separating hyperplanes in discrete optimization
    Kiselman, Christer O.
    COMPTES RENDUS MATHEMATIQUE, 2008, 346 (1-2) : 49 - 52
  • [46] Global minima optimization via mirror-rotation transformation
    Liu, Yi-Rong
    Jiang, Yan
    Jiang, Shuai
    Wang, Chun-Yu
    Huang, Teng
    PHYSICAL REVIEW RESEARCH, 2022, 4 (04):
  • [47] Local minima in anatomic aperture-based IMRT optimization
    Aubry, J
    Beaulieu, F
    Beaulieu, L
    Tremblay, D
    MEDICAL PHYSICS, 2005, 32 (07) : 2413 - 2413
  • [48] Absence of local minima for a special class of nonconvex optimization problems
    Matveev, A.S.
    Vestnik Sankt-Peterburgskogo Universiteta. Ser 1. Matematika Mekhanika Astronomiya, 1994, (01): : 47 - 52
  • [49] Exact computation of global minima of a nonconvex portfolio optimization problem
    Kallrath, J
    FRONTIERS IN GLOBAL OPTIMIZATION, 2003, 74 : 237 - 254
  • [50] An efficient hybrid algorithm for the optimization of problems with several local minima
    Alotto, P
    Nervi, MA
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2001, 50 (04) : 847 - 868