RANDOM ATTRACTORS FOR STOCHASTIC NAVIER-STOKES EQUATION ON A 2D ROTATING SPHERE WITH STABLE LEVY NOISE

被引:1
|
作者
Dong, Leanne [1 ]
机构
[1] Gina Cody Sch Engn & Comp Sci, 1455 De Maisonneuve Blvd, Montreal, PQ H3G 1M8, Canada
来源
关键词
stochastic Navier-Stokes; unit spheres; Feller Markov invariant measure; Subject Classification; Primary; Random attractors; random dynamical systems; stable Levy noise;
D O I
10.3934/dcdsb.2020352
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove that the stochastic Navier-Stokes equations with stable Levy noise generate a random dynamical systems. Then we prove the existence of random attractor for the Navier-Stokes equations on 2D spheres under stable Levy noise (finite dimensional). We also deduce the existence of a Feller Markov Invariant Measure.
引用
收藏
页码:5421 / 5448
页数:28
相关论文
共 50 条
  • [21] Dynamics of stochastic 2D Navier-Stokes equations
    Mohammed, Salah
    Zhang, Tusheng
    JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 258 (10) : 3543 - 3591
  • [22] Ergodicity for the 3D stochastic Navier-Stokes equations perturbed by Levy noise
    Mohan, Manil T.
    Sakthivel, K.
    Sritharan, Sivaguru S.
    MATHEMATISCHE NACHRICHTEN, 2019, 292 (05) : 1056 - 1088
  • [23] Pullback Attractors for 2D Navier-Stokes Equations with Delays and Their Regularity
    Garcia-Luengo, Julia
    Marin-Rubio, Pedro
    Real, Jose
    ADVANCED NONLINEAR STUDIES, 2013, 13 (02) : 331 - 357
  • [24] Trajectory attractors for dissipative 2D Euler and Navier-Stokes equations
    Chepyzhov, V. V.
    Vishik, M. I.
    RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2008, 15 (02) : 156 - 170
  • [25] UPPER SEMICONTINUITY OF GLOBAL ATTRACTORS FOR 2D NAVIER-STOKES EQUATIONS
    Zhao, Caidi
    Duan, Jinqiao
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2012, 22 (03):
  • [26] Trajectory attractors for dissipative 2D Euler and Navier-Stokes equations
    V. V. Chepyzhov
    M. I. Vishik
    Russian Journal of Mathematical Physics, 2008, 15 : 156 - 170
  • [27] PERIODIC RANDOM ATTRACTORS FOR STOCHASTIC NAVIER-STOKES EQUATIONS ON UNBOUNDED DOMAINS
    Wang, Bixiang
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2012,
  • [28] INVARIANT MEASURES OF STOCHASTIC 2D NAVIER-STOKES EQUATIONS DRIVEN BY α-STABLE PROCESSES
    Dong, Zhao
    Xu, Lihu
    Zhang, Xicheng
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2011, 16 : 678 - 688
  • [29] Global solutions of stochastic 2D Navier-Stokes equations with Lévy noise
    Zhao Dong
    YinChao Xie
    Science in China Series A: Mathematics, 2009, 52 : 1497 - 1524
  • [30] Global solutions of stochastic 2D Navier-Stokes equations with Lévy noise
    DONG Zhao1 & XIE YinChao2 1 Institute of Applied Mathematics
    Science China Mathematics, 2009, (07) : 1497 - 1524