Trajectory attractors for dissipative 2D Euler and Navier-Stokes equations

被引:0
|
作者
V. V. Chepyzhov
M. I. Vishik
机构
[1] RAS (Kharkevich Institute),Institute for Information Transmission Problems
关键词
Mathematical Physic; Weak Solution; Periodic Boundary Condition; Planetary Boundary Layer; Global Attractor;
D O I
暂无
中图分类号
学科分类号
摘要
A trajectory attractor \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{A} $$\end{document} is constructed for the 2D Euler system containing an additional dissipation term −ru, r > 0, with periodic boundary conditions. The corresponding dissipative 2D Navier-Stokes system with the same term −ru and with viscosity v > 0 also has a trajectory attractor, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{A}_\nu $$\end{document}. Such systems model large-scale geophysical processes in atmosphere and ocean (see [1]). We prove that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{A}_\nu $$\end{document} → \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{A} $$\end{document} as v → 0+ in the corresponding metric space. Moreover, we establish the existence of the minimal limit \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{A}_{min} $$\end{document} of the trajectory attractors \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{A}_\nu $$\end{document} as v → 0+. We prove that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{A}_{min} $$\end{document} is a connected invariant subset of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{A} $$\end{document}. The connectedness problem for the trajectory attractor \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{A} $$\end{document} by itself remains open.
引用
收藏
页码:156 / 170
页数:14
相关论文
共 50 条
  • [1] Trajectory attractors for dissipative 2D Euler and Navier-Stokes equations
    Chepyzhov, V. V.
    Vishik, M. I.
    RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2008, 15 (02) : 156 - 170
  • [2] Trajectory attractor for the 2d dissipative Euler equations and its relation to the Navier-Stokes system with vanishing viscosity
    Vishik, M. I.
    Chepyzhov, V. V.
    DOKLADY MATHEMATICS, 2007, 76 (03) : 856 - 860
  • [3] Trajectory attractor for the 2d dissipative Euler equations and its relation to the Navier-Stokes system with vanishing viscosity
    M. I. Vishik
    V. V. Chepyzhov
    Doklady Mathematics, 2007, 76 : 856 - 860
  • [4] Pullback Attractors for 2D Navier-Stokes Equations with Delays and Their Regularity
    Garcia-Luengo, Julia
    Marin-Rubio, Pedro
    Real, Jose
    ADVANCED NONLINEAR STUDIES, 2013, 13 (02) : 331 - 357
  • [5] UPPER SEMICONTINUITY OF GLOBAL ATTRACTORS FOR 2D NAVIER-STOKES EQUATIONS
    Zhao, Caidi
    Duan, Jinqiao
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2012, 22 (03):
  • [6] TRAJECTORY ATTRACTORS FOR NON-AUTONOMOUS DISSIPATIVE 2D EULER EQUATIONS
    Chepyzhov, Vladimir V.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2015, 20 (03): : 811 - 832
  • [7] Controllability of 2D Euler and Navier-Stokes Equations by Degenerate Forcing
    Andrey A. Agrachev
    Andrey V. Sarychev
    Communications in Mathematical Physics, 2006, 265 : 673 - 697
  • [8] Controllability of 2D Euler and Navier-Stokes equations by degenerate forcing
    Agrachev, Andrey A.
    Sarychev, Andrey V.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 265 (03) : 673 - 697
  • [9] Attractors for nonautonomous 2D Navier-Stokes equations with normal external forces
    Lu, SS
    Wu, HQ
    Zhong, CK
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2005, 13 (03) : 701 - 719
  • [10] The fractal dimension of pullback attractors for the 2D Navier-Stokes equations with delay
    Yang, Xin-Guang
    Guo, Boling
    Guo, Chunxiao
    Li, Desheng
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (17) : 9637 - 9653