Urban Electric Load Forecasting with Mobile Phone Location Data

被引:0
|
作者
Selvarajoo, Stefan [1 ]
Schlapfer, Markus [2 ]
Tan, Rui [1 ]
机构
[1] Nanyang Technol Univ, Sch Comp Sci & Engn, Singapore, Singapore
[2] Swiss Fed Inst Technol, Singapore ETH Ctr, Future Cities Lab, Singapore, Singapore
来源
2018 ASIAN CONFERENCE ON ENERGY, POWER AND TRANSPORTATION ELECTRIFICATION (ACEPT) | 2018年
基金
新加坡国家研究基金会;
关键词
Data analytics; Electrical load forecasting; Power system management; Spatiotemporal analytics;
D O I
暂无
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In recent years, electrical load forecasting has received continuous research efforts aiming to improve the short-term prediction accuracy of local energy demands. However, current methods are not able to take explicitly into account the dynamic spatial population distribution over the course of a day, which is particularly relevant in dense urban areas. In this paper, we harness society-wide mobile phone data to map the time-varying population distribution in the Trentino region, Italy, and to use these insights for a novel electrical load forecasting method. Our results demonstrate that the integration of aggregated mobile phone data yields compelling forecast models.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Urban sensing based on mobile phone data: approaches, applications, and challenges
    Ghahramani, Mohammadhossein
    Zhou, MengChu
    Wang, Gang
    IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2020, 7 (03) : 627 - 637
  • [42] Mining Mobile Phone Data to Investigate Urban Crime Theories at Scale
    Traunmueller, Martin
    Quattrone, Giovanni
    Capra, Licia
    SOCIAL INFORMATICS, SOCINFO 2014, 2014, 8851 : 396 - 411
  • [43] Georeferenced Analysis of Urban Nightlife and Noise Based on Mobile Phone Data
    Elvas, Luis B.
    Nunes, Miguel
    Ferreira, Joao C.
    Francisco, Bruno
    Afonso, Jose A.
    APPLIED SCIENCES-BASEL, 2024, 14 (01):
  • [44] Urban Sensing Using Mobile Phone Network Data: A Survey of Research
    Calabrese, Francesco
    Ferrari, Laura
    Blondel, Vincent D.
    ACM COMPUTING SURVEYS, 2015, 47 (02)
  • [45] Urban communications and social interactions through the lens of mobile phone data
    Gaito S.
    Quadri C.
    Rossi G.P.
    Zignani M.
    Zignani, Matteo (matteo.zignani@unimi.it), 1600, Elsevier B.V. (01): : 70 - 81
  • [46] Profile based location update for cellular network using mobile phone data
    Smita Parija
    Swati Swayamsiddha
    Prasanna Kumar Sahu
    Sudhansu Sekhar Singh
    Microsystem Technologies, 2021, 27 : 369 - 377
  • [47] Estimating Origin-Destination Flows Using Mobile Phone Location Data
    Calabrese, Francesco
    Di Lorenzo, Giusy
    Liu, Liang
    Ratti, Carlo
    IEEE PERVASIVE COMPUTING, 2011, 10 (04) : 36 - 44
  • [48] Profile based location update for cellular network using mobile phone data
    Parija, Smita
    Swayamsiddha, Swati
    Sahu, Prasanna Kumar
    Singh, Sudhansu Sekhar
    MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS, 2021, 27 (02): : 369 - 377
  • [49] The relationship between mobile phone location sensor data and depressive symptom severity
    Saeb, Sohrab
    Lattie, Emily G.
    Schueller, Stephen M.
    Kording, Konrad P.
    Mohr, David C.
    PEERJ, 2016, 4
  • [50] Mobile phone location data for disasters: A review from natural hazards and epidemics
    Yabe, Takahiro
    Jones, Nicholas K.W.
    Rao, P. Suresh C.
    Gonzalez, Marta C.
    Ukkusuri, Satish V.
    Computers, Environment and Urban Systems, 2022, 94