Urban Electric Load Forecasting with Mobile Phone Location Data

被引:0
|
作者
Selvarajoo, Stefan [1 ]
Schlapfer, Markus [2 ]
Tan, Rui [1 ]
机构
[1] Nanyang Technol Univ, Sch Comp Sci & Engn, Singapore, Singapore
[2] Swiss Fed Inst Technol, Singapore ETH Ctr, Future Cities Lab, Singapore, Singapore
来源
2018 ASIAN CONFERENCE ON ENERGY, POWER AND TRANSPORTATION ELECTRIFICATION (ACEPT) | 2018年
基金
新加坡国家研究基金会;
关键词
Data analytics; Electrical load forecasting; Power system management; Spatiotemporal analytics;
D O I
暂无
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In recent years, electrical load forecasting has received continuous research efforts aiming to improve the short-term prediction accuracy of local energy demands. However, current methods are not able to take explicitly into account the dynamic spatial population distribution over the course of a day, which is particularly relevant in dense urban areas. In this paper, we harness society-wide mobile phone data to map the time-varying population distribution in the Trentino region, Italy, and to use these insights for a novel electrical load forecasting method. Our results demonstrate that the integration of aggregated mobile phone data yields compelling forecast models.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Electric load forecasting
    K.U. Leuven, Leuven, Belgium
    不详
    不详
    不详
    IEEE Control Syst Mag, 2007, 5 (43-57): : 43 - 57
  • [32] Urban Electric Load Forecasting in China Using Combined Cellular Automata
    He, Yongxiu
    Li, Dezhi
    Fang, Rui
    Yang, Lifang
    Li, Furong
    WMSO: 2008 INTERNATIONAL WORKSHOP ON MODELLING, SIMULATION AND OPTIMIZATION, PROCEEDINGS, 2009, : 7 - +
  • [33] Forecasting migraine with machine learning based on mobile phone diary and wearable data
    Stubberud, Anker
    Ingvaldsen, Sigrid Hegna
    Brenner, Eiliv
    Winnberg, Ingunn
    Olsen, Alexander
    Gravdahl, Goril Bruvik
    Matharu, Manjit Singh
    Nachev, Parashkev
    Tronvik, Erling
    CEPHALALGIA, 2023, 43 (05)
  • [34] Electric load forecasting with recency effect: A big data approach
    Wang, Pu
    Liu, Bidong
    Hong, Tao
    INTERNATIONAL JOURNAL OF FORECASTING, 2016, 32 (03) : 585 - 597
  • [35] Exploring the Influence of Urban Form on Urban Vibrancy in Shenzhen Based on Mobile Phone Data
    Tang, Lingjun
    Lin, Yu
    Li, Sijia
    Li, Sheng
    Li, Jingyi
    Ren, Fu
    Wu, Chao
    SUSTAINABILITY, 2018, 10 (12)
  • [36] Mapping urban greenspace use from mobile phone GPS data
    Mears, Meghann
    Brindley, Paul
    Barrows, Paul
    Richardson, Miles
    Maheswaran, Ravi
    PLOS ONE, 2021, 16 (07):
  • [37] Using Mobile Phone Data Analysis for the Estimation of Daily Urban Dynamics
    Bachir, Danya
    Gauthier, Vincent
    El Yacoubi, Mounim
    Khodabandelou, Ghazaleh
    2017 IEEE 20TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2017,
  • [38] Detecting latent urban mobility structure using mobile phone data
    Wang, Zi-Jia
    Chen, Zhi-Xiang
    Wu, Jiang-Yue
    Yu, Hao-Wei
    Yao, Xiang-Ming
    MODERN PHYSICS LETTERS B, 2020, 34 (30):
  • [39] Mobile phone data in studying urban rhythms: Towards an analytical framework
    Sveda, Martin
    Sladekova Madajova, Michala
    Barlik, Peter
    Krizan, Frantisek
    Suska, Pavel
    MORAVIAN GEOGRAPHICAL REPORTS, 2020, 28 (04) : 248 - 258
  • [40] Urban Sensing Based on Mobile Phone Data:Approaches, Applications, and Challenges
    Mohammadhossein Ghahramani
    MengChu Zhou
    Gang Wang
    IEEE/CAA Journal of Automatica Sinica, 2020, 7 (03) : 627 - 637