An intelligent diagnosis method of rolling bearing based on multi-scale residual shrinkage convolutional neural network

被引:15
|
作者
Zhao, Xiaoqiang [1 ,2 ,3 ]
Zhang, Yazhou [1 ]
机构
[1] Lanzhou Univ Technol, Coll Elect & Informat Engn, Lanzhou 730050, Peoples R China
[2] Gansu Key Lab Adv Control Ind Proc, Lanzhou 730050, Peoples R China
[3] Lanzhou Univ Technol, Natl Expt Teaching Ctr Elect & Control Engn, Lanzhou 730050, Peoples R China
关键词
bearing fault diagnosis; variable operating conditions; multi-scale residual shrinkage convolutional neural network; separable convolution; FAULT-DIAGNOSIS; ROTATING MACHINERY; WORKING-CONDITIONS; NOISY ENVIRONMENT; LEARNING-MODEL; AUTOENCODER;
D O I
10.1088/1361-6501/ac68d1
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The vibration signals of rolling bearings are affected by changing operating conditions and environmental noise, so they are characterized by multi-scale complexity. Deep residual shrinkage network can achieve bearing fault diagnosis in strong noise environment, but ignore the multi-scale complexity feature. To address this problem, we propose a multi-scale residual shrinkage convolutional neural network for fault diagnosis of rolling bearing. In this method, a multi-scale residual shrinkage layer based on multi-scale learning and a residual shrinkage block is constructed. By stacking multiple multi-scale residual shrinkage layers, the features of vibration signals are automatically learned from the input data. In addition, to establish the connection of different vibration signals and to reduce the number of parameters in the network, we design a separable convolution block using residual connections and separable convolution. By verifying the effectiveness of the proposed method in Case Western Reserve University and Mechanical Failure Prevention Technology datasets, the results show that the proposed method not only has good noise resistance in strong noise environments, but also has high diagnostic accuracy and good generalization performance in different load condition domains. The proposed method is compared with three other deep learning methods under the same experimental conditions, and the results show that it is superior in rolling bearing fault diagnosis.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] A Multi-Scale Convolutional Neural Network with Self-Knowledge Distillation for Bearing Fault Diagnosis
    Yu, Jiamao
    Hu, Hexuan
    MACHINES, 2024, 12 (11)
  • [42] Intelligent Tool Condition Monitoring Based on Multi-Scale Convolutional Recurrent Neural Network
    Cao, Xincheng
    Yao, Bin
    Chen, Binqiang
    He, Wangpeng
    Guo, Suqin
    Chen, Kun
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2023, E106D (05) : 644 - 652
  • [43] Crowd Counting via Residual Multi-scale Convolutional Neural Network
    Lu, Jingang
    Zhang, Li
    2019 SEVENTH INTERNATIONAL CONFERENCE ON ADVANCED CLOUD AND BIG DATA (CBD), 2019, : 315 - 320
  • [44] Multi-scale bidirectional transformer network for rolling bearing fault diagnosis
    Ruiru Qiang
    Xiaoqiang Zhao
    Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2025, 47 (5)
  • [45] Bearing Fault Diagnosis Based on Multi-Scale Convolution Neural Network and Dropout
    Liu, Xiande
    Tian, Hui
    Dai, Zuojun
    PROCEEDINGS OF 2020 IEEE 4TH INFORMATION TECHNOLOGY, NETWORKING, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (ITNEC 2020), 2020, : 1401 - 1406
  • [46] A Network Intrusion Detection Method Based on Deep Multi-scale Convolutional Neural Network
    Wang, Xiaowei
    Yin, Shoulin
    Li, Hang
    Wang, Jiachi
    Teng, Lin
    INTERNATIONAL JOURNAL OF WIRELESS INFORMATION NETWORKS, 2020, 27 (04) : 503 - 517
  • [47] A Network Intrusion Detection Method Based on Deep Multi-scale Convolutional Neural Network
    Xiaowei Wang
    Shoulin Yin
    Hang Li
    Jiachi Wang
    Lin Teng
    International Journal of Wireless Information Networks, 2020, 27 : 503 - 517
  • [48] Intelligent fault diagnosis algorithm of rolling bearing based on optimization algorithm fusion convolutional neural network
    Wang, Qiushi
    Sun, Zhicheng
    Zhu, Yueming
    Song, Chunhe
    Li, Dong
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (11) : 19963 - 19982
  • [49] Rolling bearing fault diagnosis based on efficient time channel attention optimized deep multi-scale convolutional neural networks
    Li, Ou
    Zhu, Jing
    Chen, Minghui
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (12)
  • [50] Rolling Bearing Fault Diagnosis Based on a Synchrosqueezing Wavelet Transform and a Transfer Residual Convolutional Neural Network
    Zhai, Zihao
    Luo, Liyan
    Chen, Yuhan
    Zhang, Xiaoguo
    SENSORS, 2025, 25 (02)