An intelligent diagnosis method of rolling bearing based on multi-scale residual shrinkage convolutional neural network

被引:15
|
作者
Zhao, Xiaoqiang [1 ,2 ,3 ]
Zhang, Yazhou [1 ]
机构
[1] Lanzhou Univ Technol, Coll Elect & Informat Engn, Lanzhou 730050, Peoples R China
[2] Gansu Key Lab Adv Control Ind Proc, Lanzhou 730050, Peoples R China
[3] Lanzhou Univ Technol, Natl Expt Teaching Ctr Elect & Control Engn, Lanzhou 730050, Peoples R China
关键词
bearing fault diagnosis; variable operating conditions; multi-scale residual shrinkage convolutional neural network; separable convolution; FAULT-DIAGNOSIS; ROTATING MACHINERY; WORKING-CONDITIONS; NOISY ENVIRONMENT; LEARNING-MODEL; AUTOENCODER;
D O I
10.1088/1361-6501/ac68d1
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The vibration signals of rolling bearings are affected by changing operating conditions and environmental noise, so they are characterized by multi-scale complexity. Deep residual shrinkage network can achieve bearing fault diagnosis in strong noise environment, but ignore the multi-scale complexity feature. To address this problem, we propose a multi-scale residual shrinkage convolutional neural network for fault diagnosis of rolling bearing. In this method, a multi-scale residual shrinkage layer based on multi-scale learning and a residual shrinkage block is constructed. By stacking multiple multi-scale residual shrinkage layers, the features of vibration signals are automatically learned from the input data. In addition, to establish the connection of different vibration signals and to reduce the number of parameters in the network, we design a separable convolution block using residual connections and separable convolution. By verifying the effectiveness of the proposed method in Case Western Reserve University and Mechanical Failure Prevention Technology datasets, the results show that the proposed method not only has good noise resistance in strong noise environments, but also has high diagnostic accuracy and good generalization performance in different load condition domains. The proposed method is compared with three other deep learning methods under the same experimental conditions, and the results show that it is superior in rolling bearing fault diagnosis.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] A multi-scale collaborative fusion residual neural network-based approach for bearing fault diagnosis
    Qian, Chen
    Gao, Jun
    Shao, Xing
    Wang, Cuixiang
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (04)
  • [32] Intelligent Fault Diagnosis of Rolling Element Bearing Based on Convolutional Neural Network and Frequency Spectrograms
    Liang, Pengfei
    Deng, Chao
    Wu, Jun
    Yang, Zhixin
    Zhu, Jinxuan
    2019 IEEE INTERNATIONAL CONFERENCE ON PROGNOSTICS AND HEALTH MANAGEMENT (ICPHM), 2019,
  • [33] Image Classification Method Based on Multi-Scale Convolutional Neural Network
    Du, Shaobo
    Li, Jing
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2024, 33 (10)
  • [34] Multi-Scale Rolling Bearing Fault Diagnosis Method Based on Transfer Learning
    Yin, Zhenyu
    Zhang, Feiqing
    Xu, Guangyuan
    Han, Guangjie
    Bi, Yuanguo
    APPLIED SCIENCES-BASEL, 2024, 14 (03):
  • [35] Multi-scale quadratic convolutional neural network for bearing fault diagnosis based on multi-sensor data fusion
    Ji, Yingying
    Gao, Jun
    Shao, Xing
    Wang, Cuixiang
    NONLINEAR DYNAMICS, 2025, : 14223 - 14244
  • [36] Intelligent wheel fault diagnosis based on multi-scale time-frequency map and convolutional neural network
    Li D.
    Niu J.
    Liang S.
    Chi M.
    Journal of Railway Science and Engineering, 2023, 20 (03) : 1032 - 1043
  • [37] A fault diagnosis method based on improved parallel convolutional neural network for rolling bearing
    Xu, Tao
    Lv, Huan
    Lin, Shoujin
    Tan, Haihui
    Zhang, Qing
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART G-JOURNAL OF AEROSPACE ENGINEERING, 2023, 237 (12) : 2759 - 2771
  • [38] Rolling bearing fault convolutional neural network diagnosis method based on casing signal
    Xiangyang Zhang
    Guo Chen
    Tengfei Hao
    Zhiyuan He
    Journal of Mechanical Science and Technology, 2020, 34 : 2307 - 2316
  • [39] Rolling bearing fault convolutional neural network diagnosis method based on casing signal
    Zhang, Xiangyang
    Chen, Guo
    Hao, Tengfei
    He, Zhiyuan
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2020, 34 (06) : 2307 - 2316
  • [40] Convolutional neural network diagnosis method of rolling bearing fault based on casing signal
    Zhang X.
    Chen G.
    Hao T.
    He Z.
    Li X.
    Cheng Z.
    Hangkong Dongli Xuebao/Journal of Aerospace Power, 2019, 34 (12): : 2729 - 2737