δ-Quench Measurement of a Pure Quantum-State Wave Function

被引:18
|
作者
Zhang, Shanchao [1 ,2 ]
Zhou, Yiru [1 ,2 ]
Mei, Yefeng [3 ,4 ]
Liao, Kaiyu [1 ,2 ]
Wen, Yong-Li [5 ]
Li, Jianfeng [1 ,2 ]
Zhang, Xin-Ding [1 ,2 ]
Du, Shengwang [1 ,2 ,3 ,4 ]
Yan, Hui [1 ,2 ]
Zhu, Shi-Liang [1 ,2 ,5 ]
机构
[1] South China Normal Univ, Guangdong Prov Key Lab Quantum Engn & Quantum Mat, GPETR Ctr Quantum Precis Measurement, Guangzhou 510006, Guangdong, Peoples R China
[2] South China Normal Univ, SPTE, Guangzhou 510006, Guangdong, Peoples R China
[3] Hong Kong Univ Sci & Technol, Dept Phys, Kowloon, Clear Water Bay, Hong Kong, Peoples R China
[4] Hong Kong Univ Sci & Technol, William Mong Inst Nano Sci & Technol, Kowloon, Clear Water Bay, Hong Kong, Peoples R China
[5] Nanjing Univ, Sch Phys, Natl Lab Solid State Microstruct, Nanjing 210093, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
LIGHT;
D O I
10.1103/PhysRevLett.123.190402
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The measurement of a quantum state wave function not only acts as a fundamental part in quantum physics but also plays an important role in developing practical quantum technologies. Conventional quantum state tomography has been widely used to estimate quantum wave functions, which usually requires complicated measurement techniques. The recent weak-value-based quantum measurement circumvents this resource issue but relies on an extra pointer space. Here, we theoretically propose and then experimentally demonstrate a direct and efficient measurement strategy based on a delta-quench probe: by quenching its complex probability amplitude one by one (delta quench) in the given basis, we can directly obtain the quantum wave function of a pure ensemble by projecting the quenched state onto a postselection state. We confirm its power by experimentally measuring photonic complex temporal wave functions. This new method is versatile and can find applications in quantum information science and engineering.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Quantum-state diffusion with adaptive noise
    van Dorsselaer, FE
    Nienhuis, G
    EUROPEAN PHYSICAL JOURNAL D, 1998, 2 (02): : 175 - 180
  • [42] Homodyne detection and quantum-state reconstruction
    Welsch, DG
    Vogel, W
    Opatrny, T
    PROGRESS IN OPTICS, VOL XXXIX, 1999, 39 : 63 - 211
  • [43] Informational distance on quantum-state space
    Luo, SL
    Zhang, Q
    PHYSICAL REVIEW A, 2004, 69 (03): : 032106 - 1
  • [44] Relativistic formulation of quantum-state diffusion
    Breuer, HP
    Petruccione, F
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (01): : 33 - 52
  • [45] The Existence and Role of Quantum-state Noise
    Perisic, Aleksandar
    NEUROQUANTOLOGY, 2010, 8 (04) : 626 - 632
  • [46] Quantum-state diffusion with adaptive noise
    F.E. van Dorsselaer
    G. Nienhuis
    The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics, 1998, 2 : 175 - 180
  • [47] QUANTUM-STATE SPACE METRIC AND CORRELATIONS
    ABE, S
    PHYSICAL REVIEW A, 1992, 46 (03): : 1667 - 1668
  • [48] Quantum-State Texture and Gate Identification
    Parisio, Fernando
    PHYSICAL REVIEW LETTERS, 2024, 133 (26)
  • [49] Conditions for compatibility of quantum-state assignments
    Caves, Crlton M.
    Fuchs, Christopher A.
    Schack, Rüdiger
    Physical Review A - Atomic, Molecular, and Optical Physics, 2002, 66 (06): : 621111 - 621111
  • [50] Quantum-State Renormalization in Semiconductor Nanoparticles
    Chen, Jie
    Kramer, Rena C.
    Howell, Thomas R.
    Loomis, Richard A.
    ACS Nano, 2024, 18 (52) : 35104 - 35118