δ-Quench Measurement of a Pure Quantum-State Wave Function

被引:18
|
作者
Zhang, Shanchao [1 ,2 ]
Zhou, Yiru [1 ,2 ]
Mei, Yefeng [3 ,4 ]
Liao, Kaiyu [1 ,2 ]
Wen, Yong-Li [5 ]
Li, Jianfeng [1 ,2 ]
Zhang, Xin-Ding [1 ,2 ]
Du, Shengwang [1 ,2 ,3 ,4 ]
Yan, Hui [1 ,2 ]
Zhu, Shi-Liang [1 ,2 ,5 ]
机构
[1] South China Normal Univ, Guangdong Prov Key Lab Quantum Engn & Quantum Mat, GPETR Ctr Quantum Precis Measurement, Guangzhou 510006, Guangdong, Peoples R China
[2] South China Normal Univ, SPTE, Guangzhou 510006, Guangdong, Peoples R China
[3] Hong Kong Univ Sci & Technol, Dept Phys, Kowloon, Clear Water Bay, Hong Kong, Peoples R China
[4] Hong Kong Univ Sci & Technol, William Mong Inst Nano Sci & Technol, Kowloon, Clear Water Bay, Hong Kong, Peoples R China
[5] Nanjing Univ, Sch Phys, Natl Lab Solid State Microstruct, Nanjing 210093, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
LIGHT;
D O I
10.1103/PhysRevLett.123.190402
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The measurement of a quantum state wave function not only acts as a fundamental part in quantum physics but also plays an important role in developing practical quantum technologies. Conventional quantum state tomography has been widely used to estimate quantum wave functions, which usually requires complicated measurement techniques. The recent weak-value-based quantum measurement circumvents this resource issue but relies on an extra pointer space. Here, we theoretically propose and then experimentally demonstrate a direct and efficient measurement strategy based on a delta-quench probe: by quenching its complex probability amplitude one by one (delta quench) in the given basis, we can directly obtain the quantum wave function of a pure ensemble by projecting the quenched state onto a postselection state. We confirm its power by experimentally measuring photonic complex temporal wave functions. This new method is versatile and can find applications in quantum information science and engineering.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Perturbative quantum-state estimation
    Banas, P.
    Rehacek, J.
    Hradil, Z.
    PHYSICAL REVIEW A, 2006, 74 (01):
  • [22] Unambiguous quantum-state filtering
    Takeoka, M
    Ban, M
    Sasaki, M
    PHYSICAL REVIEW A, 2003, 68 (01):
  • [23] Quantum-state protection in cavities
    Vitali, D
    Tombesi, P
    Milburn, GJ
    PHYSICAL REVIEW A, 1998, 57 (06): : 4930 - 4944
  • [24] Direct measurement of quantum-state dispersion in an accumulation layer at a semiconductor surface
    Aristov, VY
    Le Lay, G
    Zhilin, VM
    Indlekofer, G
    Grupp, C
    Taleb-Ibrahimi, A
    Soukiassian, P
    PHYSICAL REVIEW B, 1999, 60 (11) : 7752 - 7755
  • [25] Simulation of quantum-state endoscopy
    Bardroff, PJ
    Mayr, E
    Schleich, WP
    Domokos, P
    Brune, M
    Raimond, JM
    Haroche, S
    PHYSICAL REVIEW A, 1996, 53 (04): : 2736 - 2741
  • [26] Generalized quantum-state sharing
    Gordon, Goren
    Rigolin, Gustavo
    PHYSICAL REVIEW A, 2006, 73 (06):
  • [27] Quantum-state comparison and discrimination
    Hayashi, A.
    Hashimoto, T.
    Horibe, M.
    PHYSICAL REVIEW A, 2018, 97 (05)
  • [28] Quantum-state preparation and macroscopic entanglement in gravitational-wave detectors
    Mueller-Ebhardt, Helge
    Rehbein, Henning
    Li, Chao
    Mino, Yasushi
    Somiya, Kentaro
    Schnabel, Roman
    Danzmann, Karsten
    Chen, Yanbei
    PHYSICAL REVIEW A, 2009, 80 (04):
  • [29] Phase-measurement interferometry as a simulation of optimal quantum-state tomography
    Rebon, L.
    Iemmi, C.
    Ledesma, S.
    OPTIK, 2013, 124 (22): : 5548 - 5552
  • [30] Quantum-state protection in cavities
    Vitali, D.
    Tombesi, P.
    Milburn, G.J.
    Physical Review A. Atomic, Molecular, and Optical Physics, 1998, 57 (06):