Namib beetle optimization algorithm: A new meta-heuristic method for feature selection and dimension reduction

被引:38
|
作者
Chahardoli, Meysam [1 ]
Eraghi, Nafiseh Osati [1 ]
Nazari, Sara [1 ]
机构
[1] Islamic Azad Univ, Arak Branch, Comp Engn Dept, Arak, Iran
来源
关键词
dimension reduction; feature selection; meta-heuristic algorithm; Namib beetle optimization (NBO); optimization;
D O I
10.1002/cpe.6524
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Today, large amounts of data are generated in various applications such as smart cities and social networks, and their processing requires a lot of time. One of the methods of processing data types and reducing computational time on data is the use of dimension reduction methods. Reducing dimensions is a problem with the optimization approach and meta-heuristic methods can be used to solve it. Namib beetles are an example of intelligent insects and creatures in nature that use an interesting strategy to survive and collect water in the desert. In this article, the behavior of Namib beetles has been used to collect water in the desert to model the Namib beetle optimization (NBO) algorithm. In the second phase of a binary version, this algorithm is used to select features and reduce dimensions. Experiments on CEC functions show that the proposed method has fewer errors than the DE, BBO, SHO, WOA, GOA, and HHO algorithms. In large dimensions such as 200, 500, and 1000 dimensions, the NBO algorithm of meta-heuristic algorithms such as HHO and WOA has a better rank in the optimal calculation of benchmark functions. Experiments show that the proposed algorithm has a greater ability to reduce dimensions and feature selection than similar meta-heuristic algorithms. In 87.5% of the experiments, the proposed method reduces the data space more than other compared methods.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] A novel meta-heuristic optimization algorithm: Thermal exchange optimization
    Kaveh, A.
    Dadras, A.
    ADVANCES IN ENGINEERING SOFTWARE, 2017, 110 : 69 - 84
  • [42] A review of feature selection methods based on meta-heuristic algorithms
    Sadeghian, Zohre
    Akbari, Ebrahim
    Nematzadeh, Hossein
    Motameni, Homayun
    JOURNAL OF EXPERIMENTAL & THEORETICAL ARTIFICIAL INTELLIGENCE, 2025, 37 (01) : 1 - 51
  • [43] A new meta-heuristic optimizer: Pathfinder algorithm
    Yapici, Hamza
    Cetinkaya, Nurettin
    APPLIED SOFT COMPUTING, 2019, 78 : 545 - 568
  • [44] A hybrid meta-heuristic algorithm for optimization of crew scheduling
    Azadeh, A.
    Farahani, M. Hosseinabadi
    Eivazy, H.
    Nazari-Shirkouhi, S.
    Asadipour, G.
    APPLIED SOFT COMPUTING, 2013, 13 (01) : 158 - 164
  • [45] Homonuclear Molecules Optimization (HMO) meta-heuristic algorithm
    Mahdavi-Meymand, Amin
    Zounemat-Kermani, Mohammad
    KNOWLEDGE-BASED SYSTEMS, 2022, 258
  • [46] The Bedbug Meta-heuristic Algorithm to Solve Optimization Problems
    Rezvani, Kouroush
    Gaffari, Ali
    Dishabi, Mohammad Reza Ebrahimi
    JOURNAL OF BIONIC ENGINEERING, 2023, 20 (05) : 2465 - 2485
  • [47] Meta-heuristic optimization algorithm for predicting software defects
    Elsabagh, Mahmoud A.
    Farhan, Marwa S.
    Gafar, Mona G.
    EXPERT SYSTEMS, 2021, 38 (08)
  • [48] Snake Optimizer: A novel meta-heuristic optimization algorithm
    Hashim, Fatma A.
    Hussien, Abdelazim G.
    KNOWLEDGE-BASED SYSTEMS, 2022, 242
  • [49] The Bedbug Meta-heuristic Algorithm to Solve Optimization Problems
    Kouroush Rezvani
    Ali Gaffari
    Mohammad Reza Ebrahimi Dishabi
    Journal of Bionic Engineering, 2023, 20 : 2465 - 2485
  • [50] Aquila Optimizer: A novel meta-heuristic optimization algorithm
    Abualigah, Laith
    Yousri, Dalia
    Abd Elaziz, Mohamed
    Ewees, Ahmed A.
    Al-qaness, Mohammed A. A.
    Gandomi, Amir H.
    COMPUTERS & INDUSTRIAL ENGINEERING, 2021, 157 (157)