A review of feature selection methods based on meta-heuristic algorithms

被引:20
|
作者
Sadeghian, Zohre [1 ]
Akbari, Ebrahim [1 ]
Nematzadeh, Hossein [1 ]
Motameni, Homayun [1 ]
机构
[1] Islamic Azad Univ, Dept Comp Engn, Sari Branch, Sari, Iran
关键词
Data dimension reduction; classification; feature selection; optimisation algorithm; meta-heuristic algorithms; PARTICLE SWARM OPTIMIZATION; ANT COLONY OPTIMIZATION; BRAIN STORM OPTIMIZATION; HYBRID GENETIC ALGORITHM; CUCKOO SEARCH ALGORITHM; GREY WOLF OPTIMIZATION; INTRUSION DETECTION; CLASSIFICATION; INFORMATION; REGRESSION;
D O I
10.1080/0952813X.2023.2183267
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Feature selection is a real-world problem that finds a minimal feature subset from an original feature set. A good feature selection method, in addition to selecting the most relevant features with less redundancy, can also reduce computational costs and increase classification performance. One of the feature selection approaches is using meta-heuristic algorithms. This work provides a summary of some meta-heuristic feature selection methods proposed from 2018 to 2022 that were designed and implemented on a wide range of different data for solving feature selection problem. Evaluation criteria, fitness functions and classifiers used and the time complexity of each method are also depicted. The results of the study showed that some meta-heuristic algorithms alone cannot perfectly solve the feature selection problem on all types of datasets with an acceptable speed. In other words, depending on dataset, a special meta-heuristic algorithm should be used. The results of this study and the identified research gaps can be used by researchers in this field.
引用
收藏
页码:1 / 51
页数:51
相关论文
共 50 条
  • [1] Optimum Feature Selection Using Meta-heuristic Algorithms
    Saraswat, Mukesh
    Tyagi, Neha
    COMMUNICATION AND INTELLIGENT SYSTEMS, VOL 3, ICCIS 2023, 2024, 969 : 447 - 455
  • [2] Agile Partner Selection Based on Meta-heuristic Algorithms
    Lin, Zheng
    Wang, Lubin
    PROCEEDINGS OF THE ICEBE 2008: IEEE INTERNATIONAL CONFERENCE ON E-BUSINESS ENGINEERING, 2008, : 402 - 407
  • [3] Meta-Heuristic Supported Feature Selection in Classification Algorithms for Diabetes Diagnosis
    Alp, Gozde
    Soygazi, Fatih
    32ND IEEE SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU 2024, 2024,
  • [4] A systematic literature review on meta-heuristic based feature selection techniques for text classification
    Al-shalif S.A.
    Senan N.
    Saeed F.
    Ghaban W.
    Ibrahim N.
    Aamir M.
    Sharif W.
    PeerJ Computer Science, 2024, 10 : 1 - 45
  • [5] A systematic literature review on meta-heuristic based feature selection techniques for text classification
    Al-shalif, Sarah Abdulkarem
    Senan, Norhalina
    Saeed, Faisal
    Ghaban, Wad
    Ibrahim, Noraini
    Aamir, Muhammad
    Sharif, Wareesa
    PEERJ COMPUTER SCIENCE, 2024, 10
  • [6] A comparative analysis of meta-heuristic optimization algorithms for feature selection and feature weighting in neural networks
    Diaz, P. M.
    Jiju, M. Julie Emerald
    EVOLUTIONARY INTELLIGENCE, 2022, 15 (04) : 2631 - 2650
  • [7] A comparative analysis of meta-heuristic optimization algorithms for feature selection and feature weighting in neural networks
    P. M. Diaz
    M. Julie Emerald Jiju
    Evolutionary Intelligence, 2022, 15 : 2631 - 2650
  • [8] A systematic review of meta-heuristic algorithms in IoT based application
    Sharma, Vivek
    Tripathi, Ashish Kumar
    ARRAY, 2022, 14
  • [9] EHHM: Electrical Harmony Based Hybrid Meta-Heuristic for Feature Selection
    Sheikh, Khalid Hassan
    Ahmed, Shameem
    Mukhopadhyay, Krishnendu
    Singh, Pawan Kumar
    Yoon, Jin Hee
    Geem, Zong Woo
    Sarkar, Ram
    IEEE ACCESS, 2020, 8 : 158125 - 158141
  • [10] Enhanced Intrusion Detection Based Hybrid Meta-heuristic Feature Selection
    Ali, Ali Hussein
    Ammar, Boudour
    Charfeddine, Maha
    Ben Hamed, Bassem
    ADVANCES IN COMPUTATIONAL COLLECTIVE INTELLIGENCE, ICCCI 2024, PT II, 2024, 2166 : 3 - 15