Thermal characteristics of ultrahigh power density lithium-ion battery

被引:31
|
作者
Liu, Zehui [1 ,2 ]
Wang, Chu [1 ,2 ]
Guo, Xinming [1 ,2 ]
Cheng, Shikuo [1 ,2 ]
Gao, Yinghui [1 ]
Wang, Rui [3 ]
Sun, Yaohong [1 ,2 ]
Yan, Ping [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Elect Engn, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Global Creat Corp, Mianyang 620101, Sichuan, Peoples R China
关键词
Ultrahigh power density lithium-ion battery; LTO anode-based battery; HPPC; EIS; Thermal characteristics; HEAT-GENERATION; ELECTROLYTE; IMPEDANCE; MODEL; CELL; PERFORMANCE; BEHAVIOR;
D O I
10.1016/j.jpowsour.2021.230205
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Ultrahigh power density lithium-ion batteries (LIBs) are widely applied in transportation and energy storage systems. However, the thermal characteristics of power lithium-ion batteries under high discharge rates remain unclear. In this work, a commercial lithium-ion battery with lithium titanate oxide (LTO) as the anode material is investigated under discharge rates up to 40C. The heat generation power and temperature rise ratio increase with the discharge rate. A maximum heat generation rate of 358 W is obtained under 40C discharge. Due to the limited discharge capacity with high discharge rates, the highest temperature rise appears under 25C discharge, which is 38.9 degrees C. The percentage of irreversible heat increases with the discharge rate, but it only accounts for 83% under 40C discharge. Furthermore, different internal resistance estimation methods are used to predict the heat generation of lithium-ion batteries. It is found that hybrid pulse power characteristic (HPPC) method is more accurate than electrochemical impedance spectroscopy (EIS) method, and heat generation in higher discharge rate can be estimated by HPPC with a shorter time scale.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] A comprehensive study on thermal conductivity of the lithium-ion battery
    Wei, Lichuan
    Lu, Zhao
    Cao, Feng
    Zhang, Liyu
    Yang, Xi
    Yu, Xiaoling
    Jin, Liwen
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2020, 44 (12) : 9466 - 9478
  • [42] Carboxylated polyimide separator with excellent lithium ion transport properties for a high-power density lithium-ion battery
    Lin, Chun-Er
    Zhang, Hong
    Song, You-Zhi
    Zhang, Yin
    Yuan, Jia-Jia
    Zhu, Bao-Ku
    JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (03) : 991 - 998
  • [43] Thermal study on single electrodes in lithium-ion battery
    Huang, Qian
    Yan, Manming
    Jiang, Zhiyu
    JOURNAL OF POWER SOURCES, 2006, 156 (02) : 541 - 546
  • [44] Thermal model for square lithium-ion battery pack
    Zhu, C., 1600, SAE-China (34):
  • [45] Study on Thermal Safety of the Overcharged Lithium-Ion Battery
    Changwei Ji
    Shouqin Zhang
    Bing Wang
    Jiejie Sun
    Zhizu Zhang
    Yangyi Liu
    Fire Technology, 2023, 59 : 1089 - 1114
  • [46] Study on Thermal Safety of the Overcharged Lithium-Ion Battery
    Ji, Changwei
    Zhang, Shouqin
    Wang, Bing
    Sun, Jiejie
    Zhang, Zhizu
    Liu, Yangyi
    FIRE TECHNOLOGY, 2023, 59 (03) : 1089 - 1114
  • [47] Lithium-Ion Battery Thermal Event and Protection: A Review
    Chang, Chi-Hao
    Gorin, Craig
    Zhu, Bizhong
    Beaucarne, Guy
    Ji, Guo
    Yoshida, Shin
    SAE INTERNATIONAL JOURNAL OF ELECTRIFIED VEHICLES, 2024, 13 (03):
  • [48] HEAT TRANSFER AND THERMAL STRESS IN A LITHIUM-ION BATTERY
    Wu, Wei
    Xiao, Xinran
    Shi, Danghe
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION - 2010, VOL 5, PTS A AND B, 2012, : 343 - 351
  • [49] Thermal and electric inhomogeneity in lithium-ion battery packs
    Huang, Jinpeng
    Long, Rui
    Ma, Liang
    Liu, Zhichun
    Liu, Wei
    APPLIED THERMAL ENGINEERING, 2025, 269
  • [50] SOC Model of High Power Lithium-ion Battery
    Hajia, N.
    Venkatesh, B.
    2015 IEEE ELECTRICAL POWER AND ENERGY CONFERENCE (EPEC), 2015, : 112 - 119