Thermal characteristics of ultrahigh power density lithium-ion battery

被引:31
|
作者
Liu, Zehui [1 ,2 ]
Wang, Chu [1 ,2 ]
Guo, Xinming [1 ,2 ]
Cheng, Shikuo [1 ,2 ]
Gao, Yinghui [1 ]
Wang, Rui [3 ]
Sun, Yaohong [1 ,2 ]
Yan, Ping [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Elect Engn, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Global Creat Corp, Mianyang 620101, Sichuan, Peoples R China
关键词
Ultrahigh power density lithium-ion battery; LTO anode-based battery; HPPC; EIS; Thermal characteristics; HEAT-GENERATION; ELECTROLYTE; IMPEDANCE; MODEL; CELL; PERFORMANCE; BEHAVIOR;
D O I
10.1016/j.jpowsour.2021.230205
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Ultrahigh power density lithium-ion batteries (LIBs) are widely applied in transportation and energy storage systems. However, the thermal characteristics of power lithium-ion batteries under high discharge rates remain unclear. In this work, a commercial lithium-ion battery with lithium titanate oxide (LTO) as the anode material is investigated under discharge rates up to 40C. The heat generation power and temperature rise ratio increase with the discharge rate. A maximum heat generation rate of 358 W is obtained under 40C discharge. Due to the limited discharge capacity with high discharge rates, the highest temperature rise appears under 25C discharge, which is 38.9 degrees C. The percentage of irreversible heat increases with the discharge rate, but it only accounts for 83% under 40C discharge. Furthermore, different internal resistance estimation methods are used to predict the heat generation of lithium-ion batteries. It is found that hybrid pulse power characteristic (HPPC) method is more accurate than electrochemical impedance spectroscopy (EIS) method, and heat generation in higher discharge rate can be estimated by HPPC with a shorter time scale.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Characteristics of and factors influencing thermal runaway propagation in lithium-ion battery packs
    Wang, Zhirong
    He, Tengfei
    Bian, Huan
    Jiang, Fengwei
    Yang, Yun
    JOURNAL OF ENERGY STORAGE, 2021, 41
  • [32] Investigating thermal runaway characteristics and trigger mechanism of the parallel lithium-ion battery
    Zhou, Zhizuan
    Li, Maoyu
    Zhou, Xiaodong
    Ju, Xiaoyu
    Yang, Lizhong
    APPLIED ENERGY, 2023, 349
  • [33] Analysis of polarization and thermal characteristics in lithium-ion battery with various electrode thicknesses
    Zhao, Daan
    Chen, Wei
    JOURNAL OF ENERGY STORAGE, 2023, 71
  • [34] A calibration calorimetry method to investigate the thermal characteristics of a cylindrical lithium-ion battery
    Sheng, Lei
    Zhang, Zhendong
    Su, Lin
    Zhang, Hengyun
    Zhang, Hua
    Li, Kang
    Fang, Yidong
    Ye, Wen
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2021, 165
  • [35] Comparative Life Cycle Assessment of Mobile Power Banks with Lithium-Ion Battery and Lithium-Ion Polymer Battery
    Yang, Jie
    Gu, Fu
    Guo, Jianfeng
    Chen, Bin
    SUSTAINABILITY, 2019, 11 (19)
  • [36] Experimental and analytical study on heat generation characteristics of a lithium-ion power battery
    Xie, Yongqi
    Shi, Shang
    Tang, Jincheng
    Wu, Hongwei
    Yu, Jianzu
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2018, 122 : 884 - 894
  • [37] A Silicon Monoxide Lithium-Ion Battery Anode with Ultrahigh Areal Capacity
    Zhong, Jiang
    Wang, Tao
    Wang, Lei
    Peng, Lele
    Fu, Shubin
    Zhang, Meng
    Cao, Jinhui
    Xu, Xiang
    Liang, Junfei
    Fei, Huilong
    Duan, Xidong
    Lu, Bingan
    Wang, Yiliu
    Zhu, Jian
    Duan, Xiangfeng
    NANO-MICRO LETTERS, 2022, 14 (01)
  • [38] A Silicon Monoxide Lithium-Ion Battery Anode with Ultrahigh Areal Capacity
    Jiang Zhong
    Tao Wang
    Lei Wang
    Lele Peng
    Shubin Fu
    Meng Zhang
    Jinhui Cao
    Xiang Xu
    Junfei Liang
    Huilong Fei
    Xidong Duan
    Bingan Lu
    Yiliu Wang
    Jian Zhu
    Xiangfeng Duan
    Nano-Micro Letters, 2022, 14 (03) : 235 - 249
  • [39] A Silicon Monoxide Lithium-Ion Battery Anode with Ultrahigh Areal Capacity
    Jiang Zhong
    Tao Wang
    Lei Wang
    Lele Peng
    Shubin Fu
    Meng Zhang
    Jinhui Cao
    Xiang Xu
    Junfei Liang
    Huilong Fei
    Xidong Duan
    Bingan Lu
    Yiliu Wang
    Jian Zhu
    Xiangfeng Duan
    Nano-Micro Letters, 2022, 14
  • [40] Lithium-Ion Battery
    Bullis, Kevin
    TECHNOLOGY REVIEW, 2012, 115 (04) : 79 - 79