Zero Shot Learning via Multi-Scale Manifold Regularization

被引:19
|
作者
Deutsch, Shay [1 ,2 ]
Kolouri, Soheil [3 ]
Kim, Kyungnam [3 ]
Owechko, Yuri [3 ]
Soatto, Stefano [1 ]
机构
[1] Univ Calif Los Angeles, UCLA Vis Lab, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
[3] HRL Labs LLC, Malibu, CA USA
关键词
D O I
10.1109/CVPR.2017.562
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We address zero-shot learning using a new manifold alignment framework based on a localized multi-scale transform on graphs. Our inference approach includes a smoothness criterion for a function mapping nodes on a graph (visual representation) onto a linear space (semantic representation), which we optimize using multi-scale graph wavelets. The robustness of the ensuing scheme allows us to operate with automatically generated semantic annotations, resulting in an algorithm that is entirely free of manual supervision, and yet improves the state-of-the-art as measured on benchmark datasets.
引用
收藏
页码:5292 / 5299
页数:8
相关论文
共 50 条
  • [41] Face Hallucination via Multi-Scale Structure Prior Learning
    Yao, Yuexi
    Lu, Tao
    Zhao, Kanghui
    Zhang, Yanduo
    Wang, Yu
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2022, E105 (08)
  • [42] Generative Imperceptible Attack With Feature Learning Bias Reduction and Multi-Scale Variance Regularization
    Xie, Weicheng
    Niu, Zenghao
    Lin, Qinliang
    Song, Siyang
    Shen, Linlin
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2024, 19 : 7924 - 7938
  • [43] AFSRNet: learning local descriptors with adaptive multi-scale feature fusion and symmetric regularization
    Li, Dong
    Liang, Haowen
    Lam, Kin-Man
    APPLIED INTELLIGENCE, 2024, 54 (07) : 5406 - 5416
  • [44] ZERO-SHOT LEARNING USING STACKED AUTOENCODER WITH MANIFOLD REGULARIZATIONS
    Song, Jianqiang
    Shi, Guangming
    Xie, Xuemei
    Gao, Dahua
    2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 3651 - 3655
  • [45] Multi-scale gist feature manifold for building recognition
    Zhao, Cairong
    Liu, Chuancai
    Lai, Zhihui
    NEUROCOMPUTING, 2011, 74 (17) : 2929 - 2940
  • [46] Few-shot object detection on Thangka via multi-scale context information
    Hu W.
    Tang H.
    Yue C.
    Song H.
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2023, 31 (12): : 1859 - 1869
  • [47] A multi-scale hierarchical node graph neural network for few-shot learning
    Zhang, Yan
    Zhou, Xudong
    Wang, Ke
    Wang, Nian
    Li, Zenghui
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (20) : 58201 - 58223
  • [48] Multi-Scale Decision Network With Feature Fusion and Weighting for Few-Shot Learning
    Wang, Xiaoru
    Ma, Bing
    Yu, Zhihong
    Li, Fu
    Cai, Yali
    IEEE ACCESS, 2020, 8 : 92172 - 92181
  • [49] Multi-scale feature self-enhancement network for few-shot learning
    Bowen Dong
    Ronggui Wang
    Juan Yang
    Lixia Xue
    Multimedia Tools and Applications, 2021, 80 : 33865 - 33883
  • [50] Multi-scale kronecker-product relation networks for few-shot learning
    Abdelaziz, Mounir
    Zhang, Zuping
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (05) : 6703 - 6722