Multi-scale kronecker-product relation networks for few-shot learning

被引:16
|
作者
Abdelaziz, Mounir [1 ]
Zhang, Zuping [1 ]
机构
[1] Cent South Univ, Sch Comp Sci & Engn, 932 South Lushan Rd, Changsha 410083, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Few-shot learning; Multi-scale feature; Position-aware feature; Kronecker-product; Relation networks; Object recognition;
D O I
10.1007/s11042-021-11735-w
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Few-shot learning aims to train classifiers to learn new visual object categories from few training examples. Recently, metric-learning based methods have made promising progress. Relation Network is a metric-based method that uses simple convolutional neural networks to learn deep relationships between image features in order to recognize new objects. However, during the feature comparing phase, Relation Network is considered sensitive to the spatial positions of the compared objects. Moreover, it learns from only single-scale features which can lead to a poor generalization ability due to scale variation of the compared objects. To solve these problems, we intend to extend Relation Network to be position-aware and integrate multi-scale features for more robust metric learning and better generalization ability. In this paper, we propose a novel few-shot learning method called Multi-scale Kronecker-Product Relation Networks For Few-Shot Learning (MsK-PRN). Our method combines feature maps with spatial correlation maps generated from a Kronecker-product module to capture position-wise correlations between the compared features and then feeds them to a relation network module, which captures similarities between the combined features in a multi-scale manner. Extensive experiments demonstrate that the proposed method outperforms the related state-of-the-art methods on popular few-shot learning datasets. Particularly, MsKPRN has improved the accuracy of Relation Network from 50.44 to 57.02 and from 65.63 to 72.06 on 5-way 1-shot and 5-shot scenarios, respectively. Our code will be available on: https://github.com/mouniraziz/MsKPRN.
引用
收藏
页码:6703 / 6722
页数:20
相关论文
共 50 条
  • [1] Multi-scale kronecker-product relation networks for few-shot learning
    Mounir Abdelaziz
    Zuping Zhang
    Multimedia Tools and Applications, 2022, 81 : 6703 - 6722
  • [2] Dual-Branch Multi-Scale Relation Networks with Tutorial Learning for Few-Shot Learning
    Xu, Chuanyun
    Wang, Hang
    Zhang, Yang
    Zhou, Zheng
    Li, Gang
    APPLIED SCIENCES-BASEL, 2024, 14 (04):
  • [3] Multi-Scale Metric Learning for Few-Shot Learning
    Jiang, Wen
    Huang, Kai
    Geng, Jie
    Deng, Xinyang
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2021, 31 (03) : 1091 - 1102
  • [4] Multi-scale Relation Network for Few-Shot Learning Based on Meta-learning
    Ding, Yueming
    Tian, Xia
    Yin, Lirong
    Chen, Xiaobing
    Liu, Shan
    Yang, Bo
    Zheng, Wenfeng
    COMPUTER VISION SYSTEMS (ICVS 2019), 2019, 11754 : 343 - 352
  • [5] Multi-scale Comparison Network for Few-Shot Learning
    Chen, Pengfei
    Yuan, Minglei
    Lu, Tong
    MULTIMEDIA MODELING (MMM 2020), PT II, 2020, 11962 : 3 - 13
  • [6] Multi-scale feature network for few-shot learning
    Mengya Han
    Ronggui Wang
    Juan Yang
    Lixia Xue
    Min Hu
    Multimedia Tools and Applications, 2020, 79 : 11617 - 11637
  • [7] Multi-scale feature network for few-shot learning
    Han, Mengya
    Wang, Ronggui
    Yang, Juan
    Xue, Lixia
    Hu, Min
    MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (17-18) : 11617 - 11637
  • [8] Few-Shot Learning Method for Multi-Scale Feature Aggregation
    Zeng, Wu
    Mao, Guojun
    Computer Engineering and Applications, 2023, 59 (15) : 151 - 159
  • [9] A Progressive Multi-Scale Relation Network for Few-Shot Image Classification
    Tong, Le
    Zhu, Renchaoli
    Li, Tianjiu
    Li, Xinran
    Zhou, Xiaoping
    IEEE ACCESS, 2024, 12 : 157039 - 157049
  • [10] Adaptive multi-scale transductive information propagation for few-shot learning
    Fu, Sichao
    Liu, Baodi
    Liu, Weifeng
    Zou, Bin
    You, Xinhua
    Peng, Qinmu
    Jing, Xiao-Yuan
    KNOWLEDGE-BASED SYSTEMS, 2022, 249