CRISPR-Cas9 to induce fetal hemoglobin for the treatment of sickle cell disease

被引:16
|
作者
Demirci, Selami [1 ]
Leonard, Alexis [1 ]
Essawi, Khaled [1 ,2 ]
Tisdale, John F. [1 ]
机构
[1] NHLBI, Cellular & Mol Therapeut Branch, NIH, Bethesda, MD 20814 USA
[2] Jazan Univ, Dept Med Lab Sci, Coll Appl Med Sci, Jazan 45142, Saudi Arabia
关键词
GENE EDITING STRATEGIES; GAMMA-GLOBIN GENE; HEREDITARY PERSISTENCE; GENOMIC DNA; BCL11A; THERAPY; HYDROXYUREA; TARGET; ANEMIA; EXPRESSION;
D O I
10.1016/j.omtm.2021.09.010
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Genome editing is potentially a curative technique available to all individuals with beta-hemoglobinopathies, including sickle cell disease (SCD). Fetal hemoglobin (HbF) inhibits sickle hemoglobin (HbS) polymerization, and it is well described that naturally occurring hereditary persistence of HbF (HPFH) alleviates disease symptoms; therefore, reawakening of developmentally silenced HbF in adult red blood cells (RBCs) has long been of interest as a therapeutic strategy. Recent advances in genome editing platforms, particularly with the use of CRISPR-Cas9, have paved the way for efficient HbF induction through the creation of artificial HPFH mutations, editing of transcriptional HbF silencers, and modulating epigenetic intermediates that govern HbF expression. Clinical trials investigating BCL11A enhancer editing in patients with b-hemoglobinopathies have demonstrated promising results, although follow-up is short and the number of patients treated to date is low. While practical, economic, and clinical challenges of genome editing are well recognized by the scientific community, potential solutions to overcome these hurdles are in development. Here, we review the recent progress and obstacles yet to be overcome for the most effective and feasible HbF reactivation practice using CRISPR-Cas9 genome editing as a curative strategy for patients with SCD.
引用
收藏
页码:276 / 285
页数:10
相关论文
共 50 条
  • [11] Safety and efficacy studies of CRISPR-Cas9 treatment of sickle cell disease highlights disease-specific responses
    Frati, Giacomo
    Brusson, Megane
    Sartre, Gilles
    Mlayah, Bochra
    Felix, Tristan
    Chalumeau, Anne
    Antoniou, Panagiotis
    Hardouin, Giulia
    Concordet, Jean-Paul
    Romano, Oriana
    Turchiano, Giandomenico
    Miccio, Annarita
    MOLECULAR THERAPY, 2024, 32 (12) : 4337 - 4352
  • [12] CRISPR-Cas9 Genome Editing of γ-Globin Promoters in Human Hematopoietic Stem Cells to Induce Erythrocyte Fetal Hemoglobin for Treatment of β-Hemoglobinopathies
    Metais, Jean-Yves
    Doerfler, Phillip A.
    Mayuranathan, Thiyagaraj
    Bauer, Daniel E.
    Fowler, Stephanie
    Hsieh, Matthew
    Katta, Varun
    Keriwala, Sagar
    Lazzarotto, Cicera
    Luk, Kevin
    Neel, Michael
    Perry, Scott
    Porter, Shaina
    Ryu, Byoung Y.
    Sharma, Akshay
    Shea, Devlin
    Peters, Samuel
    Tisdale, John F.
    Wolfe, Scot A.
    Woodard, Kaitly Jensen
    Uchida, Naoya
    Wu, Yuxuan
    Yao, Yu
    Zeng, Jing
    Pruett-Miller, Shondra M.
    Tsai, Shengdar Q.
    Weiss, Mitchell J.
    BLOOD, 2019, 134
  • [13] Development and Translation of a Novel CRISPR Genome Editing Therapy to Induce Fetal Hemoglobin for Sickle Cell Disease
    Katta, Varun
    Levine, Rachel M.
    O'Keefe, Kiera
    Li, Yichao
    Dempsey, Erin A.
    Nimmagadda, Nikitha
    Jang, Yoonjeong
    Mayberry, Kalin
    Mayurathan, Thiyagaraj
    Lazzarotto, Cicera R.
    Wood, Rachael K.
    Manquen, Garret
    Powers, Alicia D.
    Yao, Yu
    Uchida, Naoya
    Fazio, Frank
    Lockey, Tim
    Sharma, Akshay
    Tisdale, John F.
    Zhou, Sheng
    Weiss, Mitchell J.
    Yen, Jonathan S.
    Tsai, Shengdar Q.
    MOLECULAR THERAPY, 2024, 32 (05) : 2 - 3
  • [14] CRISPR-Cas9 Applications in Cardiovascular Disease
    Khouzam, John Paul S.
    Tivakaran, Vijai S.
    CURRENT PROBLEMS IN CARDIOLOGY, 2021, 46 (03)
  • [15] Application of CRISPR-Cas9 in eye disease
    Wu, Wenyi
    Tang, Luosheng
    D'Amore, Patricia A.
    Lei, Hetian
    EXPERIMENTAL EYE RESEARCH, 2017, 161 : 116 - 123
  • [16] RE-CREATING HEREDITARY PERSISTENCE OF FETAL HEMOGLOBIN WITH CRISPR/CAS9 TO TREAT SICKLE CELL DISEASE AND BETA-THALASSEMIA
    Lin, M.
    Paik, E.
    Mishra, B.
    Chou, S.
    Burkhardt, D.
    Kernytsky, A.
    Pettiglio, M.
    Corcoran, S.
    Chen, Y. -S.
    Tomkinson, K.
    Sanginario, A.
    Woo, A.
    Zhang, Y.
    Lee, M. J.
    Allen, M.
    Cradick, T.
    Tan, S.
    West, J.
    Weinstein, M.
    Cortes, M.
    Borland, T.
    Klein, L.
    Fodor, W.
    Yen, A.
    Mahajan, S.
    Wood, M.
    Chan, E.
    Eustace, B.
    Porteus, M.
    Lee, C.
    Bao, G.
    Miccio, A.
    Lattanzi, A.
    Mavilio, F.
    Chakraborty, T.
    Cowan, C.
    Novak, R.
    Lundberg, A.
    HAEMATOLOGICA, 2017, 102 : 23 - 24
  • [17] FETAL HEMOGLOBIN AND TREATMENT OF SICKLE-CELL DISEASE
    LEVINE, EA
    ROSEN, AL
    SEHGAL, LR
    GOULD, SA
    MOSS, GS
    NEW ENGLAND JOURNAL OF MEDICINE, 1988, 319 (02): : 118 - 118
  • [18] Sickle cell disease: combination new therapies vs. CRISPR-Cas9 potential and challenges - review article
    Youssry, Ilham
    Ayad, Nardeen
    ANNALS OF HEMATOLOGY, 2024, 103 (08) : 2613 - 2619
  • [19] CRISPR-Cas9 for the Treatment of Transthyretin Cardiac Amyloidosis
    Panichella, Giorgia
    Aimo, Alberto
    CURRENT PHARMACEUTICAL DESIGN, 2023, 29 (39) : 3166 - 3169
  • [20] MATURATION OF EX VIVO-CULTURED HUMAN ERYTHROCYTES AND SICKLE CELL DISEASE MODELLING USING CRISPR-CAS9
    Boccacci, Yelena
    Margaillan, Guillaume
    Dumont, Nellie
    Drouin, Mathieu
    Doyon, Yannick
    Laganiere, Ee
    EXPERIMENTAL HEMATOLOGY, 2020, 88 : S55 - S55