Spatial information sampling: another feedback mechanism of realising adaptive parameter control in meta-heuristic algorithms

被引:9
|
作者
Yang, Haichuan [1 ]
Tao, Sichen [1 ]
Zhang, Zhiming [1 ]
Cai, Zonghui [1 ]
Gao, Shangce [1 ]
机构
[1] Univ Toyama, Fac Engn, Toyama 9308555, Japan
关键词
meta-heuristic algorithms; feedback method; space-based information; GRAVITATIONAL SEARCH ALGORITHM; PARTICLE SWARM OPTIMIZATION; ANT COLONY OPTIMIZATION; DIFFERENTIAL EVOLUTION; POPULATION INTERACTION; GLOBAL OPTIMIZATION; NETWORKS; CHAOS;
D O I
10.1504/IJBIC.2022.120751
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper innovatively proposes a spatial information sampling strategy to adaptively control the parameters of meta-heuristic algorithms (MHAs). The solutions' spatial distribution information in current iterations is used to control the parameters in the following iterations. An adaptive parameter control method requires obtaining information from the operation of MHAs and feeding it back to the adjustment of parameters. The mainstream information acquisition method is to record the changes to the solutions in the iterative process. In essence, the proposed feedback method, i.e., chaotic perceptron (CP), makes use of the temporal information arising from the change of solutions in MHAs. The wingsuit flying search algorithm and differential evolution are employed as case studies. Experimental results validate the effectiveness of the proposed strategy. The source code of CP can be found at https: //toyamaailab.github.io/.
引用
收藏
页码:48 / 58
页数:11
相关论文
共 50 条
  • [11] Parameter Estimation of Two Spiking Neuron Models With Meta-Heuristic Optimization Algorithms
    AbdelAty, Amr M.
    Fouda, Mohammed E.
    Eltawil, Ahmed
    FRONTIERS IN NEUROINFORMATICS, 2022, 16
  • [12] Statistical Measurement of Software Reliability Using Meta-Heuristic Algorithms for Parameter Estimation
    Rajani
    Kumar, Naresh
    Kaswan, Kuldeep Singh
    INNOVATIVE DATA COMMUNICATION TECHNOLOGIES AND APPLICATION, ICIDCA 2021, 2022, 96 : 753 - 766
  • [13] Interest and Applicability of Meta-Heuristic Algorithms in the Electrical Parameter Identification of Multiphase Machines
    Gutierrez-Reina, Daniel
    Barrero, Federico
    Riveros, Jose
    Gonzalez-Prieto, Ignacio
    Toral, Sergio L.
    Duran, Mario J.
    ENERGIES, 2019, 12 (02):
  • [14] Parameter setting of meta-heuristic algorithms: a new hybrid method based on DEA and RSM
    Shadkam, Elham
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2022, 29 (15) : 22404 - 22426
  • [15] Meta-heuristic algorithms for parameter estimation of semi-parametric linear regression models
    Zheng, Guoqing
    Zhang, Pingjian
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2006, 51 (02) : 801 - 808
  • [16] Parameter tuning with Chess Rating System (CRS-Tuning) for meta-heuristic algorithms
    Vecek, Niki
    Mernik, Marjan
    Filipic, Bogdan
    Crepinsek, Matej
    INFORMATION SCIENCES, 2016, 372 : 446 - 469
  • [17] Radial Basis Function Based Meta-Heuristic Algorithms for Parameter Extraction of Photovoltaic Cell
    He, Peng
    Xi, Xinze
    Li, Shengnan
    Qin, Wenlong
    Xing, Chao
    Yang, Bo
    PROCESSES, 2023, 11 (06)
  • [18] Parameter setting of meta-heuristic algorithms: a new hybrid method based on DEA and RSM
    Elham Shadkam
    Environmental Science and Pollution Research, 2022, 29 : 22404 - 22426
  • [19] Optimum structural design of the lower control arm using meta-heuristic algorithms
    Akcay, Ozlem
    Ilkilic, Cumali
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2024, 46 (07)
  • [20] Intelligent Intersection Control for Delay Optimization: Using Meta-Heuristic Search Algorithms
    Jamal, Arshad
    Rahman, Muhammad Tauhidur
    Al-Ahmadi, Hassan M.
    Ullah, Irfan
    Zahid, Muhammad
    SUSTAINABILITY, 2020, 12 (05)