Parameter Estimation of Two Spiking Neuron Models With Meta-Heuristic Optimization Algorithms

被引:4
|
作者
AbdelAty, Amr M. [1 ,2 ]
Fouda, Mohammed E. [3 ,4 ]
Eltawil, Ahmed [2 ]
机构
[1] Fayoum Univ, Fac Engn, Engn Math & Phys Dept, Faiyum, Egypt
[2] King Abdullah Univ Sci & Technol KAUST, Comp Elect & Math Sci & Engn Div, Thuwal, Saudi Arabia
[3] Univ Calif Irvine, Ctr Embedded & Cyber Phys Syst, Irvine, CA 92697 USA
[4] Nile Univ, Nanoelect Integrated Syst Ctr NISC, Giza, Egypt
关键词
spiking neuron model; meta-heuristic optimization algorithms; leaky integrate and fire (LIF); adaptive exponential (AdEx) integrate and fire; in-vitro data; cuckoo search optimizer; marine predator algorithm;
D O I
10.3389/fninf.2022.771730
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The automatic fitting of spiking neuron models to experimental data is a challenging problem. The integrate and fire model and Hodgkin-Huxley (HH) models represent the two complexity extremes of spiking neural models. Between these two extremes lies two and three differential-equation-based models. In this work, we investigate the problem of parameter estimation of two simple neuron models with a sharp reset in order to fit the spike timing of electro-physiological recordings based on two problem formulations. Five optimization algorithms are investigated; three of them have not been used to tackle this problem before. The new algorithms show improved fitting when compared with the old ones in both problems under investigation. The improvement in fitness function is between 5 and 8%, which is achieved by using the new algorithms while also being more consistent between independent trials. Furthermore, a new problem formulation is investigated that uses a lower number of search space variables when compared to the ones reported in related literature.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Estimation of Muskingum parameter by meta-heuristic algorithms
    Orouji, Hossein
    Bozorg-Haddad, Omid
    Fallah-Mehdipour, Elahe
    Marino, Miguel A.
    Barati, Reza
    PROCEEDINGS OF THE INSTITUTION OF CIVIL ENGINEERS-WATER MANAGEMENT, 2014, 167 (06) : 365 - 367
  • [2] Estimation of Muskingum parameter by meta-heuristic algorithms
    Orouji, Hossein
    Bozorg-Haddad, Omid
    Fallah-Mehdipour, Elahe
    Marino, Miguel A.
    PROCEEDINGS OF THE INSTITUTION OF CIVIL ENGINEERS-WATER MANAGEMENT, 2013, 166 (06) : 315 - 324
  • [3] Meta-heuristic algorithms for parameter estimation of semi-parametric linear regression models
    Zheng, Guoqing
    Zhang, Pingjian
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2006, 51 (02) : 801 - 808
  • [4] Dynamic Optimization with Particle Swarms (DOPS): a meta-heuristic for parameter estimation in biochemical models
    Sagar, Adithya
    LeCover, Rachel
    Shoemaker, Christine
    Varner, Jeffrey
    BMC SYSTEMS BIOLOGY, 2018, 12
  • [5] A unified approach to parameter selection in meta-heuristic algorithms for layout optimization
    Kaveh, A.
    Farhoudi, N.
    JOURNAL OF CONSTRUCTIONAL STEEL RESEARCH, 2011, 67 (10) : 1453 - 1462
  • [6] A comprehensive survey on meta-heuristic algorithms for parameter extraction of photovoltaic models
    Li, Shuijia
    Gong, Wenyin
    Gu, Qiong
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2021, 141
  • [7] Statistical Measurement of Software Reliability Using Meta-Heuristic Algorithms for Parameter Estimation
    Rajani
    Kumar, Naresh
    Kaswan, Kuldeep Singh
    INNOVATIVE DATA COMMUNICATION TECHNOLOGIES AND APPLICATION, ICIDCA 2021, 2022, 96 : 753 - 766
  • [8] Parameter estimation in a nonlinear dynamic model of an aquatic ecosystem with meta-heuristic optimization
    Tashkova, Katerina
    Silc, Jurij
    Atanasova, Natasa
    Dzeroski, Saso
    ECOLOGICAL MODELLING, 2012, 226 : 36 - 61
  • [9] Optimization of drones communication by using meta-heuristic optimization algorithms
    Shah, A. F. M. Shahen
    Karabulut, Muhammet Ali
    SIGMA JOURNAL OF ENGINEERING AND NATURAL SCIENCES-SIGMA MUHENDISLIK VE FEN BILIMLERI DERGISI, 2022, 40 (01): : 108 - 117
  • [10] Cooperative meta-heuristic algorithms for global optimization problems
    Abd Elaziz, Mohamed
    Ewees, Ahmed A.
    Neggaz, Nabil
    Ibrahim, Rehab Ali
    Al-qaness, Mohammed A. A.
    Lu, Songfeng
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 176