Improved Removal of Cr(VI) using Fe3O4/C Magnetic Nanocomposites Derived from Potassium Fulvic Acid

被引:7
|
作者
Su, Qiaohong [1 ,2 ]
Lin, Zhang [2 ]
Tian, Chen [2 ]
Su, Xintai [2 ]
Xue, Xiaogang [3 ]
Su, Zhi [1 ]
机构
[1] Xinjiang Normal Univ, Coll Chem & Chem Engn, Urumqi 830054, Xinjianq, Peoples R China
[2] South China Univ Technol, Sch Environm & Energy, Key Lab Pollut Control & Ecosyst Restorat Ind Clu, Minist Educ, Guangzhou 510006, Guangdong, Peoples R China
[3] Chinese Acad Sci, Fujian Inst Res Struct Matter, Fuzhou 350002, Peoples R China
来源
CHEMISTRYSELECT | 2019年 / 4卷 / 46期
基金
中国国家自然科学基金;
关键词
Adsorption; Cr(VI); Iron oxide; Potassium fulvic acid (FA-K); HEXAVALENT CHROMIUM; EFFICIENT REMOVAL; ACTIVATED CARBON; AQUEOUS-SOLUTIONS; HIGHLY EFFICIENT; FACILE SYNTHESIS; CONGO RED; ADSORPTION; ADSORBENT; WATER;
D O I
10.1002/slct.201903972
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The development of high performance magnetic nanomaterials has a good application prospect in wastewater treatment. Herein, Fe3O4/C nanocomposites was synthesized by ecofriendly hydrolysis-calcination method using potassium fulvic acid (FA-K) and FeCl3 center dot 6H(2)O as raw materials. The morphology of Fe3O4/C nanocomposites exhibited a loose pore structure with uniform size (a diameter similar to 27 nm). The prepared Fe3O4/C nanocomposites possessed excellent dispersibility and magnetic properties in aqueous solution. The removal efficiency and maximum adsorption capacity of Fe3O4/C nanocomposites were 98% and 64.0 mg g(-1), respectively. Moreover, it was confirmed that the adsorption mechanism of Cr(VI) contains electrostatic attraction and redox reaction. In this work, we provide a convenient means for manufacturing Fe3O4/C nanocomposites, and prove that FA-K is a cheap carbon source for manufacturing Fe3O4/C nanocomposites, which makes Fe3O4/C nanocomposites have potential application value in the effective adsorption of Cr(VI).
引用
收藏
页码:13656 / 13662
页数:7
相关论文
共 50 条
  • [31] Synthesis of magnetic Fe3O4/CFA composites for the efficient removal of U(VI) from wastewater
    Chen, Zhongshan
    Wang, Jian
    Pu, Zengxin
    Zhao, Yushan
    Jia, Dashuang
    Chen, Hongxia
    Wen, Tao
    Hu, Baowei
    Alsaedi, Ahmed
    Hayat, Tasawar
    Wang, Xiangke
    CHEMICAL ENGINEERING JOURNAL, 2017, 320 : 448 - 457
  • [32] Silane-modified halloysite/Fe3O4 nanocomposites: Simultaneous removal of Cr(VI) and Sb(V) and positive effects of Cr(VI) on Sb(V) adsorption
    Zhu, Kecheng
    Duan, Yanyan
    Wang, Fu
    Gao, Pin
    Jia, Hanzhong
    Ma, Chengyu
    Wang, Chuanyi
    CHEMICAL ENGINEERING JOURNAL, 2017, 311 : 236 - 246
  • [33] Potential Biopolymer Adsorbent Functionalized with Fe3O4 Nanoparticles for the Removal of Cr(VI) From Aqueous Solution
    Eulalia Vanegas
    Pablo Castro
    Néstor Novoa
    Ramón Arrué
    Diego Juela
    Christian Cruzat
    Journal of Polymers and the Environment, 2022, 30 : 2022 - 2036
  • [34] On the passivation mechanism of Fe3O4 nanoparticles during Cr(VI) removal from water: A XAFS study
    Pinakidou, F.
    Katsikini, M.
    Simeonidis, K.
    Kaprara, E.
    Paloura, E. C.
    Mitrakas, M.
    APPLIED SURFACE SCIENCE, 2016, 360 : 1080 - 1086
  • [35] Synthesis of zeolite-A/Fe3O4/biochar composite for removal of Cr(VI) from aqueous solution
    Derbe, T.
    Zereffa, E. Amare
    Sani, T.
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY, 2024, 21 (16) : 10027 - 10046
  • [36] Potential Biopolymer Adsorbent Functionalized with Fe3O4 Nanoparticles for the Removal of Cr(VI) From Aqueous Solution
    Vanegas, Eulalia
    Castro, Pablo
    Novoa, Nestor
    Arrue, Ramon
    Juela, Diego
    Cruzat, Christian
    JOURNAL OF POLYMERS AND THE ENVIRONMENT, 2022, 30 (05) : 2022 - 2036
  • [37] Application of Magnetic Nanocomposites in Water Treatment: Core-Shell Fe3O4 Material for Efficient Adsorption of Cr(VI)
    Li, Heng
    Hua, Junpeng
    Li, Ranran
    Zhang, Yan
    Jin, Huanhuan
    Wang, Shijing
    Chen, Guoyin
    WATER, 2023, 15 (15)
  • [38] Removal of Cu(II) and Fulvic Acid by Graphene Oxide Nanosheets Decorated with Fe3O4 Nanoparticles
    Li, Jie
    Zhang, Shouwei
    Chen, Changlun
    Zhao, Guixia
    Yang, Xin
    Li, Jiaxing
    Wang, Xiangke
    ACS APPLIED MATERIALS & INTERFACES, 2012, 4 (09) : 4991 - 5000
  • [39] Synergistic mechanisms of Ni/Fe@Fe3O4-g-C3N4 (NFFOCN) nanocomposites in efficient Cr(VI) removal from aqueous solution
    Su, Junjie
    Yang, Qi
    Zhang, Zhihu
    Zhang, Ziyue
    JOURNAL OF WATER PROCESS ENGINEERING, 2024, 68
  • [40] GO/PDDA/Fe3O4 nanocomposites used for instaneous Cr(VI) removal and a reliable direct filtration-adsorption application
    Feng, Xuezhen
    Zhang, Yakun
    Liang, Chunyan
    Yu, Jingang
    Jiang, Xinyu
    DESALINATION AND WATER TREATMENT, 2019, 153 : 145 - 156