Improved Removal of Cr(VI) using Fe3O4/C Magnetic Nanocomposites Derived from Potassium Fulvic Acid

被引:7
|
作者
Su, Qiaohong [1 ,2 ]
Lin, Zhang [2 ]
Tian, Chen [2 ]
Su, Xintai [2 ]
Xue, Xiaogang [3 ]
Su, Zhi [1 ]
机构
[1] Xinjiang Normal Univ, Coll Chem & Chem Engn, Urumqi 830054, Xinjianq, Peoples R China
[2] South China Univ Technol, Sch Environm & Energy, Key Lab Pollut Control & Ecosyst Restorat Ind Clu, Minist Educ, Guangzhou 510006, Guangdong, Peoples R China
[3] Chinese Acad Sci, Fujian Inst Res Struct Matter, Fuzhou 350002, Peoples R China
来源
CHEMISTRYSELECT | 2019年 / 4卷 / 46期
基金
中国国家自然科学基金;
关键词
Adsorption; Cr(VI); Iron oxide; Potassium fulvic acid (FA-K); HEXAVALENT CHROMIUM; EFFICIENT REMOVAL; ACTIVATED CARBON; AQUEOUS-SOLUTIONS; HIGHLY EFFICIENT; FACILE SYNTHESIS; CONGO RED; ADSORPTION; ADSORBENT; WATER;
D O I
10.1002/slct.201903972
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The development of high performance magnetic nanomaterials has a good application prospect in wastewater treatment. Herein, Fe3O4/C nanocomposites was synthesized by ecofriendly hydrolysis-calcination method using potassium fulvic acid (FA-K) and FeCl3 center dot 6H(2)O as raw materials. The morphology of Fe3O4/C nanocomposites exhibited a loose pore structure with uniform size (a diameter similar to 27 nm). The prepared Fe3O4/C nanocomposites possessed excellent dispersibility and magnetic properties in aqueous solution. The removal efficiency and maximum adsorption capacity of Fe3O4/C nanocomposites were 98% and 64.0 mg g(-1), respectively. Moreover, it was confirmed that the adsorption mechanism of Cr(VI) contains electrostatic attraction and redox reaction. In this work, we provide a convenient means for manufacturing Fe3O4/C nanocomposites, and prove that FA-K is a cheap carbon source for manufacturing Fe3O4/C nanocomposites, which makes Fe3O4/C nanocomposites have potential application value in the effective adsorption of Cr(VI).
引用
收藏
页码:13656 / 13662
页数:7
相关论文
共 50 条
  • [21] Luminescent and magnetic Fe3O4/Py/PAM nanocomposites for the chromium(VI) determination
    Hong, Shi
    Chen, Hongqi
    Wang, Leyu
    Wang, Lun
    SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2008, 70 (02) : 449 - 453
  • [22] Porous structure and Cr(VI) removal abilities of Fe3O4 prepared from Fe-urea complex
    Asuha, S.
    Suyala, B.
    Zhao, S.
    MATERIALS CHEMISTRY AND PHYSICS, 2011, 129 (1-2) : 483 - 487
  • [23] Adsorption Behaviour of EDTA Modified Magnetic Fe3O4 Coated Brewed Tea Waste on Cr(VI) Removal
    Aslihan Yilmaz Camoglu
    Duygu Ozdes
    Celal Duran
    Chemistry Africa, 2023, 6 : 921 - 931
  • [24] Preparation and characterization of magnetic Fe3O4/CNT nanoparticles by RPO method to enhance the efficient removal of Cr(VI)
    Runhua Chen
    Liyuan Chai
    Qinzhu Li
    Yan Shi
    Yangyang Wang
    Ali Mohammad
    Environmental Science and Pollution Research, 2013, 20 : 7175 - 7185
  • [25] Adsorption Behaviour of EDTA Modified Magnetic Fe3O4 Coated Brewed Tea Waste on Cr(VI) Removal
    Camoglu, Aslihan Yilmaz
    Ozdes, Duygu
    Duran, Celal
    CHEMISTRY AFRICA-A JOURNAL OF THE TUNISIAN CHEMICAL SOCIETY, 2023, 6 (02): : 921 - 931
  • [26] Synthesis, characterization and properties of ethylenediamine-functionalized Fe3O4 magnetic polymers for removal of Cr(VI) in wastewater
    Zhao Yong-Gang
    Shen Hao-Yu
    Pan Sheng-Dong
    Hu Mei-Qin
    JOURNAL OF HAZARDOUS MATERIALS, 2010, 182 (1-3) : 295 - 302
  • [27] Preparation and characterization of magnetic Fe3O4/CNT nanoparticles by RPO method to enhance the efficient removal of Cr(VI)
    Chen, Runhua
    Chai, Liyuan
    Li, Qinzhu
    Shi, Yan
    Wang, Yangyang
    Mohammad, Ali
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2013, 20 (10) : 7175 - 7185
  • [28] Magnetic adsorption separation (MAS) process: An alternative method of extracting Cr(VI) from aqueous solution using polypyrrole coated Fe3O4 nanocomposites
    Muliwa, Anthony M.
    Leswifi, Taile Y.
    Onyango, Maurice S.
    Maity, Arjun
    SEPARATION AND PURIFICATION TECHNOLOGY, 2016, 158 : 250 - 258
  • [29] Removal of uranium(VI) from aqueous solutions by surface modified magnetic Fe3O4 particles
    Zhang, Xiaofei
    Wang, Jun
    Li, Rumin
    Dai, Qihui
    Liu, Lianhe
    NEW JOURNAL OF CHEMISTRY, 2013, 37 (12) : 3914 - 3919
  • [30] Magnetic performance of Fe3O4/epoxy nanocomposites
    Li, Jianjun
    Yang, Jianlei
    Liu, Yanju
    Leng, Jinsong
    BEHAVIOR AND MECHANICS OF MULTIFUNCTIONAL MATERIALS AND COMPOSITES 2011, 2011, 7978