Bias-corrected AIC for selecting variables in multinomial logistic regression models

被引:14
|
作者
Yanagihara, Hirokazu [1 ]
Kamo, Ken-ichi [2 ]
Imori, Shinpei [1 ]
Satoh, Kenichi [3 ]
机构
[1] Hiroshima Univ, Dept Math, Grad Sch Sci, Higashihiroshima 7398626, Japan
[2] Sapporo Med Univ, Dept Liberal Arts & Sci, Chuo Ku, Sapporo, Hokkaido 0608543, Japan
[3] Hiroshima Univ, Dept Environmetr & Biometr, Res Inst Radiat Biol & Med, Minami Ku, Hiroshima 7348553, Japan
关键词
AIC; Bias correction; Multinomial logistic model; MLE; Partial differential operator; Variable selection;
D O I
10.1016/j.laa.2012.01.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the bias correction of Akaike's information criterion (AIC) for selecting variables in multinomial logistic regression models. For simplifying a formula of the bias-corrected AIC, we calculate the bias of the AIC to a risk function through the expectations of partial derivatives of the negative log-likelihood function. As a result, we can express the bias correction term of the bias-corrected AIC with only three matrices consisting of the second, third, and fourth derivatives of the negative log-likelihood function. By conducting numerical studies, we verify that the proposed bias-corrected AIC performs better than the crude AIC. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:4329 / 4341
页数:13
相关论文
共 50 条
  • [41] Multinomial goodness-of-fit tests for logistic regression models
    Fagerland, Morten W.
    Hosmer, David W.
    Bofin, Anna M.
    STATISTICS IN MEDICINE, 2008, 27 (21) : 4238 - 4253
  • [42] Validation and updating of risk models based on multinomial logistic regression
    Ben Van Calster
    Kirsten Van Hoorde
    Yvonne Vergouwe
    Shabnam Bobdiwala
    George Condous
    Emma Kirk
    Tom Bourne
    Ewout W. Steyerberg
    Diagnostic and Prognostic Research, 1 (1)
  • [43] Mixtures of logistic normal multinomial regression models for microbiome data
    Dai, Wenshu
    Fang, Yuan
    Subedi, Sanjeena
    JOURNAL OF APPLIED STATISTICS, 2025, 52 (03) : 624 - 655
  • [44] SIMULTANEOUS PREDICTION INTERVALS FOR MULTINOMIAL LOGISTIC-REGRESSION MODELS
    SAMBAMOORTHI, N
    ERVIN, VJ
    THOMAS, G
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1994, 23 (03) : 815 - 829
  • [45] Decision support for selecting optimal logistic regression models
    van der Heijden, Hans
    EXPERT SYSTEMS WITH APPLICATIONS, 2012, 39 (10) : 8573 - 8583
  • [46] Projecting aridity from statistically downscaled and bias-corrected variables for the Gediz Basin, Turkey
    Kirdemir, Umut
    Okkan, Umut
    Fistikoglu, Okan
    JOURNAL OF WATER AND CLIMATE CHANGE, 2022, 13 (08) : 3061 - 3082
  • [47] Dichotomization of continuous variables in logistic regression models
    Cumsille, F
    Bangdiwala, SI
    REVISTA MEDICA DE CHILE, 1996, 124 (07) : 836 - 842
  • [48] Bias-corrected instrumental variable estimation for spatial autoregressive models with measurement errors
    Luo, Guowang
    Wu, Mixia
    SPATIAL STATISTICS, 2025, 65
  • [49] Covariance matrix of the bias-corrected maximum likelihood estimator in generalized linear models
    Cordeiro, Gauss M.
    Botter, Denise A.
    Cavalcanti, Alexsandro B.
    Barroso, Lucia P.
    STATISTICAL PAPERS, 2014, 55 (03) : 643 - 652
  • [50] Covariance matrix of the bias-corrected maximum likelihood estimator in generalized linear models
    Gauss M. Cordeiro
    Denise A. Botter
    Alexsandro B. Cavalcanti
    Lúcia P. Barroso
    Statistical Papers, 2014, 55 : 643 - 652