Bias-corrected AIC for selecting variables in multinomial logistic regression models

被引:14
|
作者
Yanagihara, Hirokazu [1 ]
Kamo, Ken-ichi [2 ]
Imori, Shinpei [1 ]
Satoh, Kenichi [3 ]
机构
[1] Hiroshima Univ, Dept Math, Grad Sch Sci, Higashihiroshima 7398626, Japan
[2] Sapporo Med Univ, Dept Liberal Arts & Sci, Chuo Ku, Sapporo, Hokkaido 0608543, Japan
[3] Hiroshima Univ, Dept Environmetr & Biometr, Res Inst Radiat Biol & Med, Minami Ku, Hiroshima 7348553, Japan
关键词
AIC; Bias correction; Multinomial logistic model; MLE; Partial differential operator; Variable selection;
D O I
10.1016/j.laa.2012.01.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the bias correction of Akaike's information criterion (AIC) for selecting variables in multinomial logistic regression models. For simplifying a formula of the bias-corrected AIC, we calculate the bias of the AIC to a risk function through the expectations of partial derivatives of the negative log-likelihood function. As a result, we can express the bias correction term of the bias-corrected AIC with only three matrices consisting of the second, third, and fourth derivatives of the negative log-likelihood function. By conducting numerical studies, we verify that the proposed bias-corrected AIC performs better than the crude AIC. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:4329 / 4341
页数:13
相关论文
共 50 条
  • [31] Bias-corrected smoothed score function for single-index models
    Qiang Chen
    Lu Lin
    Lixing Zhu
    Metrika, 2010, 71 : 45 - 58
  • [32] Bias-corrected inference for multivariate nonparametric regression: Model selection and oracle property
    Giordano, Francesco
    Parrella, Maria Lucia
    JOURNAL OF MULTIVARIATE ANALYSIS, 2016, 143 : 71 - 93
  • [33] Optimal bandwidth choice for robust bias-corrected inference in regression discontinuity designs
    Calonico, Sebastian
    Cattaneo, Matias D.
    Farrell, Max H.
    ECONOMETRICS JOURNAL, 2020, 23 (02): : 192 - 210
  • [34] ASYMPTOTIC THEORY OF A BIAS-CORRECTED LEAST-SQUARES ESTIMATOR IN TRUNCATED REGRESSION
    LAI, TL
    YING, Z
    STATISTICA SINICA, 1992, 2 (02) : 519 - 539
  • [35] Bias-corrected smoothed score function for single-index models
    Chen, Qiang
    Lin, Lu
    Zhu, Lixing
    METRIKA, 2010, 71 (01) : 45 - 58
  • [36] Bias-corrected method of moments estimators for dynamic panel data models
    Breitung, Joerg
    Kripfganz, Sebastian
    Hayakawa, Kazuhiko
    ECONOMETRICS AND STATISTICS, 2022, 24 : 116 - 132
  • [37] Bias-corrected regularized solution to inverse ill-posed models
    Yunzhong Shen
    Peiliang Xu
    Bofeng Li
    Journal of Geodesy, 2012, 86 : 597 - 608
  • [38] Bias of the corrected KIC for underfitted regression models
    Bekara, M
    Fleury, G
    2004 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL II, PROCEEDINGS: SENSOR ARRAY AND MULTICHANNEL SIGNAL PROCESSING SIGNAL PROCESSING THEORY AND METHODS, 2004, : 517 - 520
  • [39] Bias-corrected regularized solution to inverse ill-posed models
    Shen, Yunzhong
    Xu, Peiliang
    Li, Bofeng
    JOURNAL OF GEODESY, 2012, 86 (08) : 597 - 608
  • [40] Bias-Corrected Inference of High-Dimensional Generalized Linear Models
    Tang, Shengfei
    Shi, Yanmei
    Zhang, Qi
    MATHEMATICS, 2023, 11 (04)