Spectral invariance of Gaussian Schell-model beams

被引:2
|
作者
Gao, Yaru [1 ,2 ,3 ]
Li, Xiaofei [1 ,2 ,3 ]
Cai, Yangjian [1 ,2 ,3 ,4 ]
Schouten, Hugo F. [5 ]
Visser, Taco D. [1 ,2 ,5 ,6 ]
机构
[1] Shandong Normal Univ, Sch Phys & Elect, Shandong Prov Engn & Tech Ctr Light Manipulat, Jinan 250014, Peoples R China
[2] Shandong Normal Univ, Sch Phys & Elect, Shandong Prov Key Lab Opt & Photon Devices, Jinan 250014, Peoples R China
[3] Shandong Normal Univ, Collaborat Innovat Ctr Light Manipulat & Applicat, Jinan 250358, Peoples R China
[4] Soochow Univ, Sch Phys Sci & Technol, Suzhou 215006, Peoples R China
[5] Vrije Univ, Dept Phys & Astron, Amsterdam, Netherlands
[6] Univ Rochester, Inst Opt, Rochester, NY 14627 USA
来源
OPTICS EXPRESS | 2020年 / 28卷 / 14期
基金
中国国家自然科学基金;
关键词
PROPAGATION; REDSHIFTS; LIGHT;
D O I
10.1364/OE.397889
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
It is well known that in general the spectrum of a beam that is generated by a partially coherent source will change on propagation. Here we derive necessary and sufficient conditions under which the often-used Gaussian Schell-model sources can produce beams whose normalized spectrum is invariant everywhere, or is invariant just along the beam axis. These sources are not necessarily quasi-homogeneous or obeying the scaling law. (C) 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:20032 / 20039
页数:8
相关论文
共 50 条
  • [41] INTERPRETATION AND EXPERIMENTAL DEMONSTRATION OF TWISTED GAUSSIAN SCHELL-MODEL BEAMS
    FRIBERG, AT
    TERVONEN, E
    TURUNEN, J
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1994, 11 (06): : 1818 - 1826
  • [42] Propagation of Gaussian Schell-model vortex beams in biological tissues
    Duan, Meiling
    Tian, Yannan
    Li, Jinhong
    OPTICA APPLICATA, 2019, 49 (02) : 203 - 215
  • [43] WAIST LOCATION AND RAYLEIGH RANGE FOR GAUSSIAN SCHELL-MODEL BEAMS
    PU, JX
    JOURNAL OF OPTICS-NOUVELLE REVUE D OPTIQUE, 1991, 22 (03): : 157 - 159
  • [44] Diffractive optical elements for shaping Gaussian Schell-model beams
    Kim, H
    Kim, T
    Choi, K
    Han, S
    Lee, IM
    Lee, B
    Holography, Diffractive Optics, and Applications II, Pts 1 and 2, 2005, 5636 : 431 - 439
  • [45] ALGEBRAIC AND GRAPHICAL PROPAGATION METHODS FOR GAUSSIAN SCHELL-MODEL BEAMS
    FRIBERG, AT
    TURUNEN, J
    OPTICAL ENGINEERING, 1986, 25 (07) : 857 - 864
  • [46] Directionality of Gaussian Schell-model beams propagating in atmospheric turbulence
    Shirai, T
    Dogariu, A
    Wolf, E
    OPTICS LETTERS, 2003, 28 (08) : 610 - 612
  • [47] PROPAGATION OF GAUSSIAN SCHELL-MODEL BEAMS - ALGEBRAIC AND GRAPHICAL METHODS
    TURUNEN, J
    FRIBERG, AT
    ACTA POLYTECHNICA SCANDINAVICA-APPLIED PHYSICS SERIES, 1985, (149): : 303 - 306
  • [48] Focal shift of partially polarized Gaussian Schell-model beams
    Wang, L
    Lü, BD
    OPTIK, 2003, 114 (04): : 169 - 174
  • [49] Turbulence distance of radial Gaussian Schell-model array beams
    Li, X.
    Ji, X.
    Eyyuboglu, H. T.
    Baykal, Y.
    APPLIED PHYSICS B-LASERS AND OPTICS, 2010, 98 (2-3): : 557 - 565
  • [50] Cosine-Gaussian correlated Schell-model pulsed beams
    Ding, Chaoliang
    Korotkova, Olga
    Zhang, Yongtao
    Pan, Liuzhan
    OPTICS EXPRESS, 2014, 22 (01): : 931 - 942