Spectral invariance of Gaussian Schell-model beams

被引:2
|
作者
Gao, Yaru [1 ,2 ,3 ]
Li, Xiaofei [1 ,2 ,3 ]
Cai, Yangjian [1 ,2 ,3 ,4 ]
Schouten, Hugo F. [5 ]
Visser, Taco D. [1 ,2 ,5 ,6 ]
机构
[1] Shandong Normal Univ, Sch Phys & Elect, Shandong Prov Engn & Tech Ctr Light Manipulat, Jinan 250014, Peoples R China
[2] Shandong Normal Univ, Sch Phys & Elect, Shandong Prov Key Lab Opt & Photon Devices, Jinan 250014, Peoples R China
[3] Shandong Normal Univ, Collaborat Innovat Ctr Light Manipulat & Applicat, Jinan 250358, Peoples R China
[4] Soochow Univ, Sch Phys Sci & Technol, Suzhou 215006, Peoples R China
[5] Vrije Univ, Dept Phys & Astron, Amsterdam, Netherlands
[6] Univ Rochester, Inst Opt, Rochester, NY 14627 USA
来源
OPTICS EXPRESS | 2020年 / 28卷 / 14期
基金
中国国家自然科学基金;
关键词
PROPAGATION; REDSHIFTS; LIGHT;
D O I
10.1364/OE.397889
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
It is well known that in general the spectrum of a beam that is generated by a partially coherent source will change on propagation. Here we derive necessary and sufficient conditions under which the often-used Gaussian Schell-model sources can produce beams whose normalized spectrum is invariant everywhere, or is invariant just along the beam axis. These sources are not necessarily quasi-homogeneous or obeying the scaling law. (C) 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:20032 / 20039
页数:8
相关论文
共 50 条
  • [21] Spectral changes of Gaussian Schell-model beams passing through a dispersive lens
    Pan, LZ
    Lü, B
    OPTIK, 2003, 114 (11): : 485 - 490
  • [22] Partially coherent Gaussian Schell-model electromagnetic beams
    Seshadri, S.R.
    Journal of the Optical Society of America A: Optics and Image Science, and Vision, 1999, 16 (06): : 1373 - 1380
  • [23] SPATIAL COHERENCE PROPERTIES OF GAUSSIAN SCHELL-MODEL BEAMS
    SUDOL, RJ
    FRIBERG, AT
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1982, 72 (12) : 1818 - 1818
  • [24] Spectral shifts and spectral switches of diffracted twisted Gaussian Schell-model beams in the far field
    Wang, Haixia
    Pan, Liuzhan
    Guangxue Xuebao/Acta Optica Sinica, 2008, 28 (01): : 184 - 188
  • [25] Propagation invariants of twisted Gaussian Schell-model beams
    Lü, B
    Peng, YJ
    OPTIK, 2005, 116 (04): : 153 - 157
  • [26] Complex coherent square Gaussian Schell-model beams
    Wang, Yuyan
    Mei, Zhangrong
    Wang, Jixian
    Mao, Yonghua
    Zhang, Ming
    OPTIK, 2022, 251
  • [27] Electromagnetic multi-Gaussian Schell-model beams
    Mei, Zhangrong
    Korotkova, Olga
    Shchepakina, Elena
    JOURNAL OF OPTICS, 2013, 15 (02)
  • [28] Rotating anisotropic Gaussian Schell-model array beams
    Zheng, Simin
    Huang, Ju
    Ji, Xiaoling
    Cheng, Ke
    Wang, Tao
    OPTICS COMMUNICATIONS, 2021, 484
  • [29] Partially coherent Gaussian Schell-model electromagnetic beams
    Seshadri, SR
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1999, 16 (06): : 1373 - 1380
  • [30] PROPAGATION AND IMAGING EXPERIMENTS WITH GAUSSIAN SCHELL-MODEL BEAMS
    HE, QS
    TURUNEN, J
    FRIBERG, AT
    OPTICS COMMUNICATIONS, 1988, 67 (04) : 245 - 250