Time-varying models for extreme values

被引:59
|
作者
Huerta, Gabriel [1 ]
Sanso, Bruno
机构
[1] Univ New Mexico, Dept Math & Stat, Albuquerque, NM 87131 USA
[2] Univ Calif Santa Cruz, Dept Appl Math & Stat, Santa Cruz, CA USA
基金
美国国家科学基金会;
关键词
spatio-temporal process; extreme values; GEV distribution; process convolutions; MCMC; ozone levels;
D O I
10.1007/s10651-007-0014-3
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
We propose a new approach for modeling extreme values that are measured in time and space. First we assume that the observations follow a Generalized Extreme Value (GEV) distribution for which the location, scale or shape parameters define the space-time structure. The temporal component is defined through a Dynamic Linear Model (DLM) or state space representation that allows to estimate the trend or seasonality of the data in time. The spatial element is imposed through the evolution matrix of the DLM where we adopt a process convolution form. We show how to produce temporal and spatial estimates of our model via customized Markov Chain Monte Carlo (MCMC) simulation. We illustrate our methodology with extreme values of ozone levels produced daily in the metropolitan area of Mexico City and with rainfall extremes measured at the Caribbean coast of Venezuela.
引用
收藏
页码:285 / 299
页数:15
相关论文
共 50 条
  • [41] On the predictability of time-varying VAR and DSGE models
    Stelios Bekiros
    Alessia Paccagnini
    Empirical Economics, 2013, 45 : 635 - 664
  • [42] On time-varying factor models: Estimation and testing
    Su, Liangjun
    Wang, Xia
    JOURNAL OF ECONOMETRICS, 2017, 198 (01) : 84 - 101
  • [43] Transfer Function Models with Time-Varying Coefficients
    de A. Moura, Maria Silvia
    Morettin, Pedro A.
    C. Toloi, Clelia M.
    Chiann, Chang
    JOURNAL OF PROBABILITY AND STATISTICS, 2012, 2012
  • [44] Time-Varying Parameter Realized Volatility Models
    Wang, Yudong
    Pan, Zhiyuan
    Wu, Chongfeng
    JOURNAL OF FORECASTING, 2017, 36 (05) : 566 - 580
  • [45] Time-varying parameter models with endogenous regressors
    Kim, CJ
    ECONOMICS LETTERS, 2006, 91 (01) : 21 - 26
  • [46] TIME-VARYING PARAMETER REGRESSION-MODELS
    BECK, N
    AMERICAN JOURNAL OF POLITICAL SCIENCE, 1983, 27 (03) : 557 - 600
  • [47] Modeling volatility with time-varying FIGARCH models
    Belkhouja, Mustapha
    Boutahary, Mohamed
    ECONOMIC MODELLING, 2011, 28 (03) : 1106 - 1116
  • [48] Inference on stochastic time-varying coefficient models
    Giraitis, L.
    Kapetanios, G.
    Yates, T.
    JOURNAL OF ECONOMETRICS, 2014, 179 (01) : 46 - 65
  • [49] Functional models for time-varying random objects
    Dubey, Paromita
    Mueller, Hans-Georg
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2020, 82 (02) : 275 - 327
  • [50] Stabilization of stationary and time-varying autoregressive models
    Juntunen, M
    Tervo, J
    Kaipio, JP
    PROCEEDINGS OF THE 1998 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-6, 1998, : 2173 - 2176