Time-varying models for extreme values

被引:59
|
作者
Huerta, Gabriel [1 ]
Sanso, Bruno
机构
[1] Univ New Mexico, Dept Math & Stat, Albuquerque, NM 87131 USA
[2] Univ Calif Santa Cruz, Dept Appl Math & Stat, Santa Cruz, CA USA
基金
美国国家科学基金会;
关键词
spatio-temporal process; extreme values; GEV distribution; process convolutions; MCMC; ozone levels;
D O I
10.1007/s10651-007-0014-3
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
We propose a new approach for modeling extreme values that are measured in time and space. First we assume that the observations follow a Generalized Extreme Value (GEV) distribution for which the location, scale or shape parameters define the space-time structure. The temporal component is defined through a Dynamic Linear Model (DLM) or state space representation that allows to estimate the trend or seasonality of the data in time. The spatial element is imposed through the evolution matrix of the DLM where we adopt a process convolution form. We show how to produce temporal and spatial estimates of our model via customized Markov Chain Monte Carlo (MCMC) simulation. We illustrate our methodology with extreme values of ozone levels produced daily in the metropolitan area of Mexico City and with rainfall extremes measured at the Caribbean coast of Venezuela.
引用
收藏
页码:285 / 299
页数:15
相关论文
共 50 条
  • [31] Trending time-varying coefficient market models
    Zhang, Chongshan
    Yin, Xiangrong
    QUANTITATIVE FINANCE, 2012, 12 (10) : 1533 - 1546
  • [32] Specification tests for time-varying coefficient models
    Fu, Zhonghao
    Hong, Yongmiao
    Su, Liangjun
    Wang, Xia
    JOURNAL OF ECONOMETRICS, 2023, 235 (02) : 720 - 744
  • [33] Time-Varying Additive Models for Longitudinal Data
    Zhang, Xiaoke
    Park, Byeong U.
    Wang, Jane-Ling
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2013, 108 (503) : 983 - 998
  • [34] Wavelet estimation in time-varying coefficient models
    Zhou, Xingcai
    Ni, Beibei
    Zhu, Chunhua
    LITHUANIAN MATHEMATICAL JOURNAL, 2019, 59 (02) : 276 - 293
  • [35] TIME-VARYING COEFFICIENT MODELS AND THEIR FORECASTING PERFORMANCE
    RIDDINGTON, GL
    OMEGA-INTERNATIONAL JOURNAL OF MANAGEMENT SCIENCE, 1993, 21 (05): : 573 - 583
  • [36] Hierarchical Shrinkage in Time-Varying Parameter Models
    Belmonte, Miguel A. G.
    Koop, Gary
    Korobilis, Dimitris
    JOURNAL OF FORECASTING, 2014, 33 (01) : 80 - 94
  • [37] Social dynamics models with time-varying influence
    McQuade, Sean
    Piccoli, Benedetto
    Duteil, Nastassia Pouradier
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2019, 29 (04): : 681 - 716
  • [38] Estimation and Inference on Time-Varying FAVAR Models
    Fu, Zhonghao
    Su, Liangjun
    Wang, Xia
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2024, 42 (02) : 533 - 547
  • [39] Time-varying linear autoregressive models for segmentation
    Florin, Charles
    Paragios, Nikos
    Funka-Lea, Gareth
    Williams, James
    2007 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-7, 2007, : 509 - +
  • [40] Time-varying copula models for longitudinal data
    Kurum, Esra
    Hughes, John
    Li, Runze
    Shiffman, Saul
    STATISTICS AND ITS INTERFACE, 2018, 11 (02) : 203 - 221