A learning-based approach for leaf detection in traffic surveillance video

被引:2
|
作者
Chen, Li [1 ,2 ]
Peng, Xiaoping [1 ,2 ]
Tian, Jing [1 ,2 ]
Liu, Jiaxiang [1 ,2 ]
机构
[1] Wuhan Univ Sci & Technol, Sch Comp Sci & Technol, Wuhan 430081, Hubei, Peoples R China
[2] Wuhan Univ Sci & Technol, Hubei Prov Key Lab Intelligent Informat Proc & Re, Wuhan 430081, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Leaf detection; Video surveillance; Probabilistic model; Feature extraction; IMAGES; LEAVES;
D O I
10.1007/s11045-017-0540-6
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Traffic surveillance video is recorded in uncontrolled outdoor scenarios. If the camera view gets obstructed by the leaves, the video will fail to be used in vehicle tracking and recognition. It is required that the traffic video surveillance systems run self-checking in order to evaluate if the camera view is blocked by leaves or not. In view of this, a two-step learning framework is proposed in this paper to automatically determine whether the video is leaf degraded or leaf free. First, the proposed framework exploits the convolutional neural network to learn the discriminative features of leaf particles. Then the trained model is used to detect candidate leaf patches in the image. Second, a probabilistic approach is used to pool decisions of each candidate leaf patch to generate final leaf detection result in the video. Experimental results are provided to demonstrate that the proposed approach can effectively detect leaves in real-world traffic surveillance video.
引用
收藏
页码:1895 / 1904
页数:10
相关论文
共 50 条
  • [41] Enhancing Security in Real-Time Video Surveillance: A Deep Learning-Based Remedial Approach for Adversarial Attack Mitigation
    Ranjana Panigrahi, Gyana
    Kumar Sethy, Prabira
    Kumari Behera, Santi
    Gupta, Manoj
    Alenizi, Farhan A.
    Nanthaamornphong, Aziz
    IEEE ACCESS, 2024, 12 : 88913 - 88926
  • [42] Machine Learning-Based Approach for Fake News Detection
    Gururaj H.L.
    Lakshmi H.
    Soundarya B.C.
    Flammini F.
    Janhavi V.
    Journal of ICT Standardization, 2022, 10 (04): : 509 - 530
  • [43] MultiResEdge: A deep learning-based edge detection approach
    Muntarina, Kanija
    Mostafiz, Rafid
    Khanom, Fahmida
    Shorif, Sumaita Binte
    Uddin, Mohammad Shorif
    INTELLIGENT SYSTEMS WITH APPLICATIONS, 2023, 20
  • [44] A Graph Learning-Based Approach for Lateral Movement Detection
    Rabbani, Mahdi
    Rashidi, Leila
    Ghorbani, Ali A.
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2024, 21 (05): : 5361 - 5373
  • [45] CCLearner: A Deep Learning-Based Clone Detection Approach
    Li, Liuqing
    Feng, He
    Zhuang, Wenjie
    Meng, Na
    Ryder, Barbara
    2017 IEEE INTERNATIONAL CONFERENCE ON SOFTWARE MAINTENANCE AND EVOLUTION (ICSME), 2017, : 249 - 259
  • [46] Traffic Surveillance: Vehicle Detection and Pose Estimation Based on Deep Learning
    Fadhil, Fajer
    Abdulghani, Mohammed
    Salih, Anmar
    Ghazal, Mohammed
    PRZEGLAD ELEKTROTECHNICZNY, 2023, 99 (02): : 131 - 134
  • [47] TLTD: A Testing Framework for Learning-Based IoT Traffic Detection Systems
    Liu, Xiaolei
    Zhang, Xiaosong
    Guizani, Nadra
    Lu, Jiazhong
    Zhu, Qingxin
    Du, Xiaojiang
    SENSORS, 2018, 18 (08)
  • [48] Learning-based intrusion detection for high-dimensional imbalanced traffic
    Gu, Yuheng
    Yang, Yu
    Yan, Yu
    Shen, Fang
    Gao, Minna
    COMPUTER COMMUNICATIONS, 2023, 212 : 366 - 376
  • [49] A Deep Learning-based Traffic Event Detection From Social Media
    Jonnalagadda, Jahnavi
    Hashemi, Mahdi
    2021 IEEE 22ND INTERNATIONAL CONFERENCE ON INFORMATION REUSE AND INTEGRATION FOR DATA SCIENCE (IRI 2021), 2021, : 1 - 8
  • [50] A novel deep learning-based approach for malware detection
    Shaukat, Kamran
    Luo, Suhuai
    Varadharajan, Vijay
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 122