A novel deep learning-based approach for malware detection

被引:76
|
作者
Shaukat, Kamran [1 ,2 ]
Luo, Suhuai [1 ]
Varadharajan, Vijay [3 ]
机构
[1] Univ Newcastle, Sch Informat & Phys Sci, Callaghan, Australia
[2] Univ Punjab, Dept Data Sci, Lahore 54890, Pakistan
[3] Univ Newcastle, Adv Cyber Secur Engn Res Ctr ACSRC, Callaghan, Australia
关键词
Malware detection; Cybersecurity; Machine learning; Deep learning; Transfer learning; Ensembling; Support vector machine; Modelling; Malware; Image-based malware detection; Convolutional neural network; Classification; Cyberattack; FRAMEWORK;
D O I
10.1016/j.engappai.2023.106030
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Malware detection approaches can be classified into two classes, including static analysis and dynamic analysis. Conventional approaches of the two classes have their respective advantages and disadvantages. For example, static analysis is faster but cannot detect the malware variants generated through code obfuscation, whereas dynamic analysis can effectively detect variants generated through code obfuscation but is slower and requires intensive resources. This paper proposes a novel deep learning-based approach for malware detection. It delivers better performance than conventional approaches by combining static and dynamic analysis advantages. First, it visualises a portable executable (PE) file as a coloured image. Second, it extracts deep features from the colour image using fine-tuned deep learning model. Third, it detects malware based on the deep features using support vector machines (SVM). The proposed method combines deep learning with machine learning and eliminates the need for intensive feature engineering tasks and domain knowledge. The proposed approach is scalable, cost-effective, and efficient. The detection effectiveness of the proposed method is validated through 12 machine learning models and 15 deep learning models. The generalisability of the proposed framework is validated on various benchmark datasets. The proposed approach outperformed with an accuracy of 99.06% on the Malimg dataset. The Wilcoxon signed-rank test is used to show the statistical significance of the proposed framework. The detailed experimental results demonstrate the superiority of the proposed method over the other state-of-the-art approaches, with an average increase in accuracy of 16.56%. Finally, to tackle the problems of imbalanced data and the shortage of publicly available datasets for malware detection, various data augmentation techniques are proposed, which lead to improved performance. It is evident from the results that the proposed framework can be useful to the defence industry, which will be helpful in devising more efficient malware detection solutions.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] A lightweight deep learning-based android malware detection framework
    Ma, Runze
    Yin, Shangnan
    Feng, Xia
    Zhu, Huijuan
    Sheng, Victor S.
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 255
  • [2] On the Influence of Image Settings in Deep Learning-based Malware Detection
    Mercaldo, Francesco
    Martinelli, Fabio
    Santone, Antonella
    Vinod, P.
    PROCEEDINGS OF THE 8TH INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS SECURITY AND PRIVACY (ICISSP), 2021, : 669 - 676
  • [3] Deep Learning-Based Malware Detection Using PE Headers
    Nakrosis, Arnas
    Lagzdinyte-Budnike, Ingrida
    Paulauskaite-Taraseviene, Agne
    Paulikas, Giedrius
    Dapkus, Paulius
    INFORMATION AND SOFTWARE TECHNOLOGIES, ICIST 2022, 2022, 1665 : 3 - 18
  • [4] Towards Deep Learning-Based Approach for Detecting Android Malware
    Booz, Jarrett
    McGiff, Josh
    Hatcher, William
    Yu, Wei
    Nguyen, James
    Lu, Chao
    INTERNATIONAL JOURNAL OF SOFTWARE INNOVATION, 2019, 7 (04) : 1 - 24
  • [5] Utilizing obfuscation information in deep learning-based Android malware detection
    Wu, Junji
    Kanai, Atsushi
    2021 IEEE 45TH ANNUAL COMPUTERS, SOFTWARE, AND APPLICATIONS CONFERENCE (COMPSAC 2021), 2021, : 1321 - 1326
  • [6] An optimal deep learning-based framework for the detection and classification of android malware
    Bose, S. Jebin
    Kalaiselvi, R.
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 44 (06) : 9297 - 9310
  • [7] Deep Learning-Based Multi-classification for Malware Detection in IoT
    Wang, Zhiqiang
    Liu, Qian
    Wang, Zhuoyue
    Chi, Yaping
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2022, 31 (17)
  • [8] MAPAS: a practical deep learning-based android malware detection system
    Jinsung Kim
    Younghoon Ban
    Eunbyeol Ko
    Haehyun Cho
    Jeong Hyun Yi
    International Journal of Information Security, 2022, 21 : 725 - 738
  • [9] Comparison of Three Deep Learning-based Approaches for IoT Malware Detection
    Khanh Duy Tung Nguyen
    Tran Minh Tuan
    Le, Son Hai
    Anh Phan Viet
    Ogawa, Mizuhito
    Nguyen Le Minh
    PROCEEDINGS OF 2018 10TH INTERNATIONAL CONFERENCE ON KNOWLEDGE AND SYSTEMS ENGINEERING (KSE), 2018, : 382 - 387
  • [10] MAPAS: a practical deep learning-based android malware detection system
    Kim, Jinsung
    Ban, Younghoon
    Ko, Eunbyeol
    Cho, Haehyun
    Yi, Jeong Hyun
    INTERNATIONAL JOURNAL OF INFORMATION SECURITY, 2022, 21 (04) : 725 - 738