Numerical Schemes for Rough Parabolic Equations

被引:5
|
作者
Deya, Aurelien [1 ]
机构
[1] Univ Nancy 1, Inst Elie Cartan Nancy, F-54506 Vandoeuvre Les Nancy, France
来源
APPLIED MATHEMATICS AND OPTIMIZATION | 2012年 / 65卷 / 02期
关键词
Rough paths theory; Stochastic PDEs; Approximation schemes; Fractional Brownian motion; PARTIAL-DIFFERENTIAL-EQUATIONS; STOCHASTIC-EVOLUTION EQUATIONS; FRACTIONAL BROWNIAN-MOTION; TAYLOR EXPANSIONS; ADDITIVE NOISE; DRIVEN; TIME; APPROXIMATION; SIMULATION; PATHS;
D O I
10.1007/s00245-011-9157-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to the study of numerical approximation schemes for a class of parabolic equations on (0,1) perturbed by a non-linear rough signal. It is the continuation of Deya (Electron. J. Probab. 16:1489-1518, 2011) and Deya et al. (Probab. Theory Relat. Fields, to appear), where the existence and uniqueness of a solution has been established. The approach combines rough paths methods with standard considerations on discretizing stochastic PDEs. The results apply to a geometric 2-rough path, which covers the case of the multidimensional fractional Brownian motion with Hurst index H > 1/3.
引用
收藏
页码:253 / 292
页数:40
相关论文
共 50 条
  • [41] ON THE CHOICE OF INITIAL CONDITIONS OF DIFFERENCE SCHEMES FOR PARABOLIC EQUATIONS
    Berikelashvili, G.
    Gupta, M. M.
    Mirianashvili, M.
    MEMOIRS ON DIFFERENTIAL EQUATIONS AND MATHEMATICAL PHYSICS, 2011, 53 : 29 - 38
  • [42] Applications of approximate gradient schemes for nonlinear parabolic equations
    Eymard, Robert
    Handlovicova, Angela
    Herbin, Raphaele
    Mikula, Karol
    Stasova, Olga
    APPLICATIONS OF MATHEMATICS, 2015, 60 (02) : 135 - 156
  • [43] Difference schemes for the problem of fusing hyperbolic and parabolic equations
    A. A. Samarskiî
    P. N. Vabishchevich
    S. V. lemeshevskiî
    P. P. Matus
    Siberian Mathematical Journal, 1998, 39 : 825 - 833
  • [44] Difference schemes for the problem of fusing hyperbolic and parabolic equations
    Samarskii, AA
    Vabishchevich, PN
    Lemeshevskii, SV
    Matus, PP
    SIBERIAN MATHEMATICAL JOURNAL, 1998, 39 (04) : 825 - 833
  • [45] THE STABILITY OF DIFFERENCE SCHEMES FOR THE SOLUTION OF PARABOLIC DIFFERENTIAL EQUATIONS
    YUAN, CD
    DOKLADY AKADEMII NAUK SSSR, 1957, 117 (04): : 578 - 581
  • [46] MONOTONE DIFFERENCE SCHEMES OF HIGHER ACCURACY FOR PARABOLIC EQUATIONS
    Matus, Member Piotr P.
    Utebaev, Bakhadir D.
    DOKLADY NATSIONALNOI AKADEMII NAUK BELARUSI, 2020, 64 (04): : 391 - 398
  • [47] Stability of difference schemes for hyperbolic-parabolic equations
    Ashyralyev, A
    Ozdemir, Y
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2005, 50 (8-9) : 1443 - 1476
  • [48] TAYLOR SCHEMES FOR ROUGH DIFFERENTIAL EQUATIONS AND FRACTIONAL DIFFUSIONS
    Hu, Yaozhong
    Liu, Yanghui
    Nualart, David
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2016, 21 (09): : 3115 - 3162
  • [49] Numerical approximation of parabolic problems by residual distribution schemes
    Abgrall, R.
    Baurin, G.
    Krust, A.
    de Santis, D.
    Ricchiuto, M.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2013, 71 (09) : 1191 - 1206
  • [50] On numerical schemes for a hierarchy of kinetic equations
    Babovsky, Hans
    Andallah, Laek S.
    NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS, 2006, : 217 - +