Numerical Schemes for Rough Parabolic Equations

被引:5
|
作者
Deya, Aurelien [1 ]
机构
[1] Univ Nancy 1, Inst Elie Cartan Nancy, F-54506 Vandoeuvre Les Nancy, France
来源
APPLIED MATHEMATICS AND OPTIMIZATION | 2012年 / 65卷 / 02期
关键词
Rough paths theory; Stochastic PDEs; Approximation schemes; Fractional Brownian motion; PARTIAL-DIFFERENTIAL-EQUATIONS; STOCHASTIC-EVOLUTION EQUATIONS; FRACTIONAL BROWNIAN-MOTION; TAYLOR EXPANSIONS; ADDITIVE NOISE; DRIVEN; TIME; APPROXIMATION; SIMULATION; PATHS;
D O I
10.1007/s00245-011-9157-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to the study of numerical approximation schemes for a class of parabolic equations on (0,1) perturbed by a non-linear rough signal. It is the continuation of Deya (Electron. J. Probab. 16:1489-1518, 2011) and Deya et al. (Probab. Theory Relat. Fields, to appear), where the existence and uniqueness of a solution has been established. The approach combines rough paths methods with standard considerations on discretizing stochastic PDEs. The results apply to a geometric 2-rough path, which covers the case of the multidimensional fractional Brownian motion with Hurst index H > 1/3.
引用
收藏
页码:253 / 292
页数:40
相关论文
共 50 条
  • [31] Solving linear parabolic rough partial differential equations
    Bayer, Christian
    Belomestny, Denis
    Redmann, Martin
    Riedel, Sebastian
    Schoenmakers, John
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 490 (01)
  • [32] A numerical approach to degenerate parabolic equations
    Pop, IS
    Yong, WA
    NUMERISCHE MATHEMATIK, 2002, 92 (02) : 357 - 381
  • [33] A numerical approach to degenerate parabolic equations
    Iuliu Sorin Pop
    Wen-An Yong
    Numerische Mathematik, 2002, 92 : 357 - 381
  • [34] NUMERICAL LOCKING PROBLEMS FOR PARABOLIC EQUATIONS
    Arnautu, Viorel
    Mosneagu, Ana-Maria
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2011, 32 (09) : 927 - 945
  • [35] NUMERICAL ATTRACTORS FOR ROUGH DIFFERENTIAL EQUATIONS
    Duc, Luu Hoang
    Kloeden, Peter
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2023, 61 (05) : 2381 - 2407
  • [36] Comparison of a Rothe-two grig method and other numerical schemes for solving semilinear parabolic equations
    Koleva, MN
    NUMERICAL ANALYSIS AND ITS APPLICATIONS, 2005, 3401 : 352 - 359
  • [37] Applications of approximate gradient schemes for nonlinear parabolic equations
    Robert Eymard
    Angela Handlovičová
    Raphaèle Herbin
    Karol Mikula
    Olga Stašová
    Applications of Mathematics, 2015, 60 : 135 - 156
  • [38] IMPLICIT DIFFERENCE SCHEMES FOR QUASILINEAR PARABOLIC FUNCTIONAL EQUATIONS
    Matusik, Milena
    DEMONSTRATIO MATHEMATICA, 2012, 45 (04) : 869 - 886
  • [39] ON THE STABILITY OF BLOCK DIFFERENCE-SCHEMES FOR PARABOLIC EQUATIONS
    GUDOVICH, NN
    TERTERIAN, AA
    DOKLADY AKADEMII NAUK SSSR, 1987, 297 (03): : 531 - 534
  • [40] DIFFERENCE SCHEMES FOR NONLINEAR-SYSTEMS OF PARABOLIC EQUATIONS
    ZHADAEVA, NG
    DOKLADY AKADEMII NAUK BELARUSI, 1975, 19 (03): : 208 - 211