Probabilistic Flood Mapping Using Synthetic Aperture Radar Data

被引:103
|
作者
Giustarini, Laura [1 ]
Hostache, Renaud [1 ]
Kavetski, Dmitri [2 ]
Chini, Marco [1 ]
Corato, Giovanni [3 ]
Schlaffer, Stefan [4 ]
Matgen, Patrick [1 ]
机构
[1] Luxembourg Inst Sci & Technol, L-4362 Esch Sur Alzette, Luxembourg
[2] Univ Adelaide, Sch Civil Environm & Min Engn, Adelaide, SA 5005, Australia
[3] PrimeResults SARL, L-1118 Luxembourg, Luxembourg
[4] Vienna Univ Technol, Dept Geodesy & Geoinformat, A-1040 Vienna, Austria
来源
关键词
Probability; synthetic aperture radar (SAR); uncertainty; water; HYDRAULIC MODELS; SAR DATA; SEQUENTIAL ASSIMILATION; WATER STAGES; TERRASAR-X; INUNDATION; CALIBRATION; IMAGES; UNCERTAINTIES; INFORMATION;
D O I
10.1109/TGRS.2016.2592951
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Probabilistic flood mapping offers flood managers, decision makers, insurance agencies, and humanitarian relief organizations a useful characterization of uncertainty in flood mapping delineation. Probabilistic flood maps are also of high interest for data assimilation into numerical models. The direct assimilation of probabilistic floodmaps into hydrodynamic models would be beneficial because it would eliminate the intermediate step of having to extract water levels first. This paper introduces a probabilistic flood mapping procedure based on synthetic aperture radar (SAR) data. Given a SAR image of backscatter values, we construct a total histogram of backscatter values and decompose this histogram into probability distribution functions of backscatter values associated with flooded (open water) and non-flooded pixels, respectively. These distributions are then used to estimate, for each pixel, its probability of being flooded. The new approach improves on binary SAR-based flood mapping procedures, which do not inform on the uncertainty in the pixel state. The proposed approach is tested using four SAR images from two floodplains, i.e., the Severn River (U.K.) and the Red River (U.S.). In all four test cases, reliability diagrams, with error values ranging from 0.04 to 0.23, indicate a good agreement between the SAR-derived probabilistic flood map and an independently available validation map, which is obtained from aerial photography.
引用
收藏
页码:6958 / 6969
页数:12
相关论文
共 50 条
  • [31] Mapping and monitoring geological hazards using optical, LiDAR, and synthetic aperture RADAR image data
    Joyce, K. E.
    Samsonov, S. V.
    Levick, S. R.
    Engelbrecht, J.
    Belliss, S.
    NATURAL HAZARDS, 2014, 73 (02) : 137 - 163
  • [32] Optimizing flood mapping using multi-synthetic aperture radar images for regions of the lower mekong basin in Vietnam
    Tuan, Vu Anh
    Quang, Nguyen Hong
    Hang, Le Thi Thu
    EUROPEAN JOURNAL OF REMOTE SENSING, 2021, 54 (01) : 13 - 28
  • [33] WEMSAR-wind energy mapping using synthetic aperture radar
    Espedal, HA
    Johannessen, OM
    Furevik, B
    Sandven, S
    Hasager, CB
    Christensen, LC
    Gaudiosi, G
    IGARSS 2001: SCANNING THE PRESENT AND RESOLVING THE FUTURE, VOLS 1-7, PROCEEDINGS, 2001, : 1137 - 1139
  • [34] Mapping mesoscale and submesoscale wind fields using synthetic aperture radar
    Thompson, DR
    Beal, RC
    IGARSS '98 - 1998 INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, PROCEEDINGS VOLS 1-5: SENSING AND MANAGING THE ENVIRONMENT, 1998, : 1382 - 1384
  • [35] Mapping vegetation structure for biodiversity analysis using synthetic aperture radar
    Imhoff, ML
    Milne, AK
    Sisk, TD
    Lawrence, WT
    Brennan, K
    IGARSS '97 - 1997 INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, PROCEEDINGS VOLS I-IV: REMOTE SENSING - A SCIENTIFIC VISION FOR SUSTAINABLE DEVELOPMENT, 1997, : 1624 - 1626
  • [36] Utilization of synthetic aperture radar data
    Ono, M
    REMOTE SENSING FOR TROPICAL ECOSYSTEM MANAGEMENT, 2000, : 110 - 116
  • [37] Burnt-Area Quick Mapping Method with Synthetic Aperture Radar Data
    Rokhmatuloh
    Ardiansyah
    Indratmoko, Satria
    Riyanto, Indra
    Margatama, Lestari
    Arief, Rahmat
    Applied Sciences (Switzerland), 2022, 12 (23):
  • [38] Land subsidence analysis using synthetic aperture radar data
    Bokhari, Rida
    Shu, Hong
    Tariq, Aqil
    Al-Ansari, Nadhir
    Guluzade, Rufat
    Chen, Ting
    Jamil, Ahsan
    Aslam, Muhammad
    HELIYON, 2023, 9 (03)
  • [39] Burnt-Area Quick Mapping Method with Synthetic Aperture Radar Data
    Rokhmatuloh
    Ardiansyah
    Indratmoko, Satria
    Riyanto, Indra
    Margatama, Lestari
    Arief, Rahmat
    APPLIED SCIENCES-BASEL, 2022, 12 (23):
  • [40] Operational mapping of soil moisture using synthetic aperture radar data:: Application to the touch basin (France)
    Baghdadi, Nicolas
    Aubert, Maelle
    Cerdan, Olivier
    Franchisteguy, Laurent
    Viel, Christian
    Martin, Eric
    Zribi, Mehrez
    Desprats, Jean Francois
    SENSORS, 2007, 7 (10) : 2458 - 2483