Probabilistic Flood Mapping Using Synthetic Aperture Radar Data

被引:103
|
作者
Giustarini, Laura [1 ]
Hostache, Renaud [1 ]
Kavetski, Dmitri [2 ]
Chini, Marco [1 ]
Corato, Giovanni [3 ]
Schlaffer, Stefan [4 ]
Matgen, Patrick [1 ]
机构
[1] Luxembourg Inst Sci & Technol, L-4362 Esch Sur Alzette, Luxembourg
[2] Univ Adelaide, Sch Civil Environm & Min Engn, Adelaide, SA 5005, Australia
[3] PrimeResults SARL, L-1118 Luxembourg, Luxembourg
[4] Vienna Univ Technol, Dept Geodesy & Geoinformat, A-1040 Vienna, Austria
来源
关键词
Probability; synthetic aperture radar (SAR); uncertainty; water; HYDRAULIC MODELS; SAR DATA; SEQUENTIAL ASSIMILATION; WATER STAGES; TERRASAR-X; INUNDATION; CALIBRATION; IMAGES; UNCERTAINTIES; INFORMATION;
D O I
10.1109/TGRS.2016.2592951
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Probabilistic flood mapping offers flood managers, decision makers, insurance agencies, and humanitarian relief organizations a useful characterization of uncertainty in flood mapping delineation. Probabilistic flood maps are also of high interest for data assimilation into numerical models. The direct assimilation of probabilistic floodmaps into hydrodynamic models would be beneficial because it would eliminate the intermediate step of having to extract water levels first. This paper introduces a probabilistic flood mapping procedure based on synthetic aperture radar (SAR) data. Given a SAR image of backscatter values, we construct a total histogram of backscatter values and decompose this histogram into probability distribution functions of backscatter values associated with flooded (open water) and non-flooded pixels, respectively. These distributions are then used to estimate, for each pixel, its probability of being flooded. The new approach improves on binary SAR-based flood mapping procedures, which do not inform on the uncertainty in the pixel state. The proposed approach is tested using four SAR images from two floodplains, i.e., the Severn River (U.K.) and the Red River (U.S.). In all four test cases, reliability diagrams, with error values ranging from 0.04 to 0.23, indicate a good agreement between the SAR-derived probabilistic flood map and an independently available validation map, which is obtained from aerial photography.
引用
收藏
页码:6958 / 6969
页数:12
相关论文
共 50 条
  • [21] Mapping of wheat lodging susceptibility with synthetic aperture radar data
    Chauhan, Sugandh
    Darvishzadeh, Roshanak
    van Delden, Sander H.
    Boschetti, Mirco
    Nelson, Andrew
    Remote Sensing of Environment, 2021, 259
  • [22] Mapping of wheat lodging susceptibility with synthetic aperture radar data
    Chauhan, Sugandh
    Darvishzadeh, Roshanak
    van Delden, Sander H.
    Boschetti, Mirco
    Nelson, Andrew
    REMOTE SENSING OF ENVIRONMENT, 2021, 259
  • [23] Flood monitoring and forecasting using synthetic aperture radar (SAR) and meteorological data: A case study
    Bhuiyan, Md Mafijul Islam
    Hoque, S. N. M. Azizul
    MALAYSIAN JOURNAL OF FUNDAMENTAL AND APPLIED SCIENCES, 2020, 16 (03): : 300 - 306
  • [24] Fully polarimetric synthetic aperture radar data classification using probabilistic and non-probabilistic kernel methods
    Khosravi, Iman
    Razoumny, Yury
    Hatami Afkoueieh, Javad
    Alavipanah, Seyed Kazem
    EUROPEAN JOURNAL OF REMOTE SENSING, 2021, 54 (01) : 310 - 317
  • [25] Improving Urban Flood Mapping by Merging Synthetic Aperture Radar-Derived Flood Footprints with Flood Hazard Maps
    Mason, David C.
    Bevington, John
    Dance, Sarah L.
    Revilla-Romero, Beatriz
    Smith, Richard
    Vetra-Carvalho, Sanita
    Cloke, Hannah L.
    WATER, 2021, 13 (11)
  • [26] Improving urban flood mapping by merging synthetic aperture radar-derived flood footprints with flood hazard maps
    Mason, David C.
    Bevington, John
    Dance, Sarah L.
    Revilla-Romero, Beatriz
    Smith, Richard
    Vetra-Carvalho, Sanita
    Cloke, Hannah L.
    Water (Switzerland), 2021, 13 (11):
  • [27] Near-real-time non-obstructed flood inundation mapping using synthetic aperture radar
    Shen, Xinyi
    Anagnostou, Emmanouil N.
    Allen, George H.
    Brakenridge, G. Robert
    Kettner, Albert J.
    REMOTE SENSING OF ENVIRONMENT, 2019, 221 : 302 - 315
  • [28] PROBABILISTIC URBAN FLOOD MAPPING USING SAR DATA
    Chini, Marco
    Hostache, Renaud
    Pelich, Ramona
    Matgen, Patrick
    Pulvirenti, Luca
    Pierdicca, Nazzareno
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 4643 - 4645
  • [29] Automated mapping and feature extraction using high resolution Interferometric Synthetic Aperture Radar data
    Carande, RE
    Marra, M
    Cronin, D
    Nagy, P
    PROCEEDINGS OF THE 1998 IEEE RADAR CONFERENCE: RADARCON 98, 1998, : 257 - 262
  • [30] Mapping and monitoring geological hazards using optical, LiDAR, and synthetic aperture RADAR image data
    K. E. Joyce
    S. V. Samsonov
    S. R. Levick
    J. Engelbrecht
    S. Belliss
    Natural Hazards, 2014, 73 : 137 - 163