Surface modification of SU-8 by photografting of functional polymers for lab-on-a-chip applications

被引:0
|
作者
Gao, Zhan [1 ]
Henthorn, David B. [1 ]
Kim, Chang-Soo [2 ]
机构
[1] Univ Missouri, Dept Chem & Biol Engn, Rolla, MO 65401 USA
[2] Univ Missouri, Dept Elect & Comp Engn & Biol Sci, Rolla, MO 65401 USA
基金
美国国家科学基金会;
关键词
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Due to the high flexibility and versatility in the process development of microfluidic devices, an epoxy-based, high-aspect ratio photoresist SU-8 is now attracting attention as the main structuring material of the fluidic channels. Manipulation of the surface properties of SU-8 channel wall is critical to attach functional films such as enzyme-immobilized layers or biocompatible layers. We describe a new in situ patterning method to form a hydrogel film on SU-8 by a photografted polymerization procedure. The hydrophobic surface of SU-8 is modified using a surface bound initiator HCPK (1-hydroxycyclohexyl phenyl ketone). A p-HEMA (poly-2-hydroxyethylmethacrylate) hydrogel film is grafted by photopolymerization of solution-phase precursors on the modified surface. The contact angle measurements reveal that the hydrophilicity was increased after the grafting. This is a promising in situ formation method of patterned functional films within a completed microfluidic channel.
引用
收藏
页码:121 / +
页数:2
相关论文
共 50 条
  • [31] Nanowire and nanotube transistors for lab-on-a-chip applications
    Lee, Minbaek
    Baik, Ku Youn
    Noah, Meg
    Kwon, Young-Kyun
    Lee, Jeong-O
    Hong, Seunghun
    LAB ON A CHIP, 2009, 9 (16) : 2267 - 2280
  • [32] Smart hydrogels in Lab-on-a-Chip (LOC) applications
    Tevlek, Atakan
    Cretin, Esin Akbay
    REACTIVE & FUNCTIONAL POLYMERS, 2024, 204
  • [33] Scanning integrated microspectrometer for lab-on-a-chip applications
    Hosseinkhannazer, H.
    McMullin, J. N.
    PHOTONICS NORTH 2007, PTS 1 AND 2, 2007, 6796
  • [34] Passive micromixer with obstructions for lab-on-a-chip applications
    Bhagat, AAS
    Dagani, G
    Peterson, ETK
    Lee, JH
    Papautsky, I
    Microfluidics, BioMEMS, and Medical Microsystems III, 2005, 5718 : 291 - 297
  • [35] An Overview of Modeling and Simulation for Lab-on-a-Chip Applications
    Catarino, S. O.
    Minas, G.
    Miranda, J. M.
    Lanceros-Mendez, S.
    2013 IEEE 3RD PORTUGUESE MEETING IN BIOENGINEERING (ENBENG), 2013,
  • [36] Recent advances in lab-on-a-chip for biosensing applications
    Lafleur, Josiane P.
    Joensson, Alexander
    Senkbeil, Silja
    Kutter, Joerg P.
    BIOSENSORS & BIOELECTRONICS, 2016, 76 : 213 - 233
  • [37] Lab-on-a-chip technology - Applications for the life sciences
    Kuschel, M
    BIOPHARM-THE APPLIED TECHNOLOGIES OF BIOPHARMACEUTICAL DEVELOPMENT, 2001, 14 (08): : 50 - 52
  • [38] Cellulose acetate microparticles for lab-on-a-chip applications
    Di Croce, S.
    Tosi, A.
    Bilancetti, L.
    Mazzitelli, S.
    Bozzuto, N.
    Borgatti, M.
    Fabbri, E.
    Mancini, I.
    Gambari, R.
    Nastruzzi, C.
    MINERVA BIOTECNOLOGICA, 2005, 17 (04) : 259 - 269
  • [39] CMP of PC, PMMA and SU-8 polymers
    Zhong, Z. W.
    Wang, Z. F.
    Zirajutheen, B. M. P.
    Tan, Y. S.
    Tan, Y. H.
    Polytronic 2005, Proceedings, 2005, : 58 - 62
  • [40] Miniature ultrasonic transducer for lab-on-a-chip applications
    Nadtochiy, A. B.
    Shmid, V., I
    Korotchenkov, O. A.
    2020 IEEE 40TH INTERNATIONAL CONFERENCE ON ELECTRONICS AND NANOTECHNOLOGY (ELNANO), 2020, : 425 - 429