Ultra-thin flattened heat pipe with a novel band-shape spiral woven mesh wick for cooling smartphones

被引:57
|
作者
Zhou, Wenjie [1 ]
Li, Yong [1 ]
Chen, Zhaoshu [1 ]
Deng, Liqiang [1 ]
Gan, Yunhua [2 ]
机构
[1] South China Univ Technol, Sch Mech & Automot Engn, Guangzhou 510640, Guangdong, Peoples R China
[2] South China Univ Technol, Sch Elect Power, Guangzhou 510640, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Spiral woven mesh; Wick; Ultra-thin flattened heat pipe; Thermal performance; Heat dissipation; THERMAL PERFORMANCE; VAPOR CHAMBER; FABRICATION; PARAMETERS; SIMULATION;
D O I
10.1016/j.ijheatmasstransfer.2019.118792
中图分类号
O414.1 [热力学];
学科分类号
摘要
In this work, a novel spiral woven mesh (SWM) wick was developed to enhance the thermal performance of ultra-thin flattened heat pipe (UTHP) for cooling thin portable electronics. The SWM overall structure was woven in a band-shape to realize an ultra-thin and tight structure. Three different SWM structures were designed to study the effect of the wick on the UTHP thermal performance. The maximum heat transport capacity data of UTHPs were compared with the calculated capillary and entrainment limits. The effects of the cross-sectional area ratio of the wick to the UTHP on the heat transfer performance were analyzed. The heat dissipation performance of the UTHP cooling module at different inclination angles was experimentally investigated. The results indicate that the cross-sectional area ratio affected the flow characteristics of the vapor and liquid in the UTHP, thereby affecting its heat transfer performance. A further increase in the number of SWM wires did not significantly improve the UTHP thermal performance. Gravity had little effect on the heat dissipation performance of the UTHP cooling module. Compared with a copper sheet cooling module, the maximum heat dissipation power of the UTHP cooling module increased by 28.57-42.86%, and the weight reduced by 64.51%. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页数:15
相关论文
共 49 条
  • [21] Effect of the passage area ratio of liquid to vapor on an ultra-thin flattened heat pipe
    Zhou, Wenjie
    Li, Yong
    Chen, Zhaoshu
    Deng, Liqiang
    Gan, Yunhua
    APPLIED THERMAL ENGINEERING, 2019, 162
  • [22] Heat transfer performance of ultra-thin plate heat pipe with sintered porous channels structures wick
    Zhu M.
    Bai P.
    Hu Y.
    Huang J.
    Huagong Xuebao/CIESC Journal, 2019, 70 (04): : 1349 - 1357
  • [23] Heat transfer characteristics of ultra-thin flat heat pipe with nano-modified porous wick
    Liu C.
    Shang W.
    Zhao J.
    Ji X.
    Wu X.
    Xu J.
    Xu, Jinliang (xjl@ncepu.edu.cn), 1600, Materials China (68): : 4508 - 4516
  • [24] Fabrication and capillary performance of a novel composite wick for ultra-thin heat pipes
    Huang Guangwen
    Liu Wangyu
    Luo Yuanqiang
    Li Yong
    Chen Hanyin
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2021, 176
  • [25] NUMERICAL ANALYSES ON VAPOR PRESSURE DROP IN A CENTERED-WICK ULTRA-THIN HEAT PIPE
    Koito, Yasushi
    FRONTIERS IN HEAT AND MASS TRANSFER, 2019, 13
  • [26] Thermal performance of a large-diameter thin flattened heat pipe with novel composite wick structure
    Zhou, Wenjie
    Li, Yong
    Huang, Guangwen
    Yang, Yong
    Xu, Lanying
    He, Junfeng
    Jian, Yue
    CASE STUDIES IN THERMAL ENGINEERING, 2024, 57
  • [27] Numerical Investigations on Fluid Flow and Heat Transfer Characteristics of an Ultra-Thin Heat Pipe with Separated Wick Structures
    Koito, Yasushi
    Fukushima, Akira
    FRONTIERS IN HEAT AND MASS TRANSFER, 2024, 22 : 869 - 887
  • [28] Capillary performance analysis of copper powder-fiber composite wick for ultra-thin heat pipe
    Niu, Junyi
    Xie, Ning
    Gao, Xuenong
    Fang, Yutang
    Zhang, Zhengguo
    HEAT AND MASS TRANSFER, 2021, 57 (06) : 949 - 960
  • [29] Thermal performance of an ultra-thin flat heat pipe with striped super-hydrophilic wick structure
    Cui, Zhuo
    Jia, Li
    Wang, Zhou
    Dang, Chao
    Yin, Liaofei
    APPLIED THERMAL ENGINEERING, 2022, 208
  • [30] Capillary performance analysis of copper powder-fiber composite wick for ultra-thin heat pipe
    Junyi Niu
    Ning Xie
    Xuenong Gao
    Yutang Fang
    Zhengguo Zhang
    Heat and Mass Transfer, 2021, 57 : 949 - 960