Numerical Investigations on Fluid Flow and Heat Transfer Characteristics of an Ultra-Thin Heat Pipe with Separated Wick Structures

被引:0
|
作者
Koito, Yasushi [1 ]
Fukushima, Akira [2 ]
机构
[1] Kumamoto Univ, Fac Adv Sci & Technol, Div Ind Fundamentals, Kumamoto 8608555, Japan
[2] Kumamoto Univ, Grad Sch Sci & Technol, Dept Mech & Math Engn, Kumamoto 8608555, Japan
来源
关键词
Ultra-thin heat pipe; vapor chamber; heat transfer surface; CFD; thermal design; PERFORMANCE;
D O I
10.32604/fhmt.2024.050910
中图分类号
O414.1 [热力学];
学科分类号
摘要
Thermal and fluid-flow characteristics were numerically analyzed for ultra-thin heat pipes. Many studies have been conducted for ultra-thin heat pipes with a centered wick structure, but this study focused on separated wick structures to increase the evaporation/condensation surface areas within the heat pipe and to reduce the concentration of heat flux within the wick structure. A mathematical heat-pipe model was made in the threedimensional coordinate system, and the model consisted of three regions: a vapor channel, liquid-wick, and container wall regions. The conservation equations for mass, momentum, and energy were solved numerically with boundary conditions by using a code developed by one of the authors. The numerical results with the separated wick structures were compared with those with the centered, which confirmed the effectiveness of the separation of the wick structure. However, the effectiveness of the separation was affected by the position of the separated wick structure. A simple equation was presented to determine the optimum position of the separated wick structures. Numerical analyses were also conducted when the width of the heat pipe was increased with the cooled section, which clarified that the increase in the cooled-section width with the addition of wick structures was more effective than the increase in the cooled-section length. A 44% reduction in the total temperature difference of the heat pipe was obtained under the present numerical conditions. Furthermore, a comparison was made between experimental results and numerical results.
引用
收藏
页码:869 / 887
页数:19
相关论文
共 50 条
  • [1] Heat transfer performance of ultra-thin plate heat pipe with sintered porous channels structures wick
    Zhu M.
    Bai P.
    Hu Y.
    Huang J.
    Huagong Xuebao/CIESC Journal, 2019, 70 (04): : 1349 - 1357
  • [2] Heat transfer characteristics of ultra-thin flat heat pipe with nano-modified porous wick
    Liu C.
    Shang W.
    Zhao J.
    Ji X.
    Wu X.
    Xu J.
    Xu, Jinliang (xjl@ncepu.edu.cn), 1600, Materials China (68): : 4508 - 4516
  • [3] Numerical Simulation of Heat Transfer Performance for Ultra-Thin Flat Heat Pipe
    YAN Wentao
    YANG Xin
    LIU Tengqing
    WANG Shuangfeng
    JournalofThermalScience, 2023, 32 (02) : 643 - 649
  • [4] Numerical Simulation of Heat Transfer Performance for Ultra-Thin Flat Heat Pipe
    Yan, Wentao
    Yang, Xin
    Liu, Tengqing
    Wang, Shuangfeng
    JOURNAL OF THERMAL SCIENCE, 2023, 32 (02) : 643 - 649
  • [5] Numerical Simulation of Heat Transfer Performance for Ultra-Thin Flat Heat Pipe
    Wentao Yan
    Xin Yang
    Tengqing Liu
    Shuangfeng Wang
    Journal of Thermal Science, 2023, 32 : 643 - 649
  • [6] Numerical simulation of start-up characteristics and heat transfer performance of ultra-thin heat pipe
    Shi F.
    Gan Y.
    Huagong Xuebao/CIESC Journal, 2023, 74 (07): : 2814 - 2823
  • [7] NUMERICAL ANALYSES ON VAPOR TEMPERATURE DROP IN AN ULTRA-THIN HEAT PIPE WITH A THIN WICK SHEET
    Koito, Yasushi
    FRONTIERS IN HEAT AND MASS TRANSFER, 2021, 16
  • [8] Thermal and hydrodynamic characteristics of an ultra-thin flattened centered-wick heat pipe: Experiments and numerical analyses
    Koito, Yasushi
    Chen, Chong
    APPLIED THERMAL ENGINEERING, 2024, 239
  • [9] NUMERICAL ANALYSES ON VAPOR PRESSURE DROP IN A CENTERED-WICK ULTRA-THIN HEAT PIPE
    Koito, Yasushi
    FRONTIERS IN HEAT AND MASS TRANSFER, 2019, 13
  • [10] Research on heat transfer performance of spiral woven wire mesh composite capillary wick ultra-thin heat pipe
    Chen, Qi
    Li, Jinwang
    Cong, Tianshu
    APPLIED THERMAL ENGINEERING, 2025, 262